Attacks on Industrial Control Systems Modeling and Anomaly Detection

被引:1
|
作者
Eigner, Oliver [1 ]
Kreimel, Philipp [1 ]
Tavolato, Paul [1 ]
机构
[1] Univ Appl Sci St Polten, Matthias Corvinus Str 15, St Polten, Austria
关键词
Industrial Control System; Modeling Procedure; Anomaly Detection; Machine Learning;
D O I
10.5220/0006755405810588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Industrial control systems play a crucial role in a digital society, particularly when they are part of critical infrastructures. Unfortunately traditional intrusion defense strategies for IT systems are often not applicable in industrial environments. A continuous monitoring of the operation is necessary to detect abnormal behavior of a system. This paper presents an anomaly-based approach for detection and classification of attacks against industrial control systems. In order to stay close to practice we set up a test plant with sensors, actuators and controllers widely used in industry, thus, providing a test environment as close as possible to reality. First, we defined a formal model of normal system behavior, determining the essential parameters through machine learning algorithms. The goal was the definition of outlier scores to differentiate between normal and abnormal system operations. This model of valid behavior is then used to detect anomalies. Further, we launched cyber-attacks against the test setup in order to create an attack model by using naive Bayes classifiers. We applied the model to data from a real industrial plant. The test showed that the model could be transferred to different industrial control systems with reasonable adaption and training effort.
引用
收藏
页码:581 / 588
页数:8
相关论文
共 50 条
  • [21] Machine Learning Methods for Anomaly Detection in Industrial Control Systems
    Tai, Johnathan
    Alsmadi, Izzat
    Zhang, Yunpeng
    Qiao, Fengxiang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2333 - 2339
  • [22] Research on Improvement of Anomaly Detection Performance in Industrial Control Systems
    Bae, Sungho
    Hwang, Chanwoong
    Lee, Taejin
    INFORMATION SECURITY APPLICATIONS, 2021, 13009 : 76 - 87
  • [23] State-Aware Anomaly Detection for Industrial Control Systems
    Ghaeini, Hamid Reza
    Antonioli, Daniele
    Brasser, Ferdinand
    Sadeghi, Ahmad-Reza
    Tippenhauer, Nils Ole
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 1620 - 1628
  • [24] Anomaly detection using invariant rules in Industrial Control Systems
    Zhu, Qilin
    Ding, Yulong
    Jiang, Jie
    Yang, Shuang-Hua
    CONTROL ENGINEERING PRACTICE, 2025, 154
  • [25] Language identification of controlled systems: Modeling, control, and anomaly detection
    Martins, JF
    Dente, JA
    Pires, AJ
    Mendes, RV
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2001, 31 (02): : 234 - 242
  • [26] A Systematic Framework to Generate Invariants for Anomaly Detection in Industrial Control Systems
    Feng, Cheng
    Palleti, Venkata Reddy
    Mathur, Aditya
    Chana, Deeph
    26TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2019), 2019,
  • [27] Data Clustering-based Anomaly Detection in Industrial Control Systems
    Kiss, Istvan
    Genge, Bela
    Haller, Piroska
    Sebestyen, Gheorghe
    2014 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2014, : 275 - +
  • [28] Anomaly detection in Industrial Control Systems using Logical Analysis of Data
    Das, Tanmoy Kanti
    Adepu, Sridhar
    Zhou, Jianying
    COMPUTERS & SECURITY, 2020, 96
  • [29] ZOE: Content-based Anomaly Detection for Industrial Control Systems
    Wressnegger, Christian
    Kellner, Ansgar
    Rieck, Konrad
    2018 48TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN), 2018, : 127 - 138
  • [30] A modified densenet approach with nearmiss for anomaly detection in industrial control systems
    Ayas, Selen
    Ayas, Mustafa Sinasi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (16) : 22573 - 22586