Protein-Coding Genes' Retrocopies and Their Functions

被引:47
|
作者
Kubiak, Magdalena Regina [1 ]
Makalowska, Izabela [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Anthropol, Dept Integrat Genom, Fac Biol, PL-61614 Poznan, Poland
来源
VIRUSES-BASEL | 2017年 / 9卷 / 04期
关键词
retrotransposon; retrotransposition; retrocopy; retrogene; gene duplication; genome evolution; DEPENDENT DNA-POLYMERASE; BREAST-CANCER CELLS; REVERSE-TRANSCRIPTASE; LINE-1; RETROTRANSPOSITION; PROCESSED PSEUDOGENES; L1; RETROPOSED GENE; NONCODING-RNA; HEPATOCELLULAR-CARCINOMA; CONNEXIN43; PSEUDOGENE;
D O I
10.3390/v9040080
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of "relaxed" selection and remain "dormant" because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Evolution of protein-coding genes in Drosophila
    Larracuente, Amanda M.
    Sackton, Timothy B.
    Greenberg, Anthony J.
    Wong, Alex
    Singh, Nadia D.
    Sturgill, David
    Zhang, Yu
    Oliver, Brian
    Clark, Andrew G.
    TRENDS IN GENETICS, 2008, 24 (03) : 114 - 123
  • [2] Transcription of eukaryotic protein-coding genes
    Lee, TI
    Young, RA
    ANNUAL REVIEW OF GENETICS, 2000, 34 : 77 - 137
  • [3] Introns and the origin of protein-coding genes
    Senapathy, P.
    Bettrolaet, B.L.
    Siedel, H.M.
    Knowles, J.R.
    Sroltzfus, A.
    Spencer, D.F.
    Zuker, M.
    Logsdon, J.M.
    Doolittle, W.F.
    Science, 1995, 268 (5215)
  • [4] Introns in protein-coding genes in Archaea
    Watanabe, Y
    Yokobori, S
    Inaba, T
    Yamagishi, A
    Oshima, T
    Kawarabayasi, Y
    Kikuchi, H
    Kita, K
    FEBS LETTERS, 2002, 510 (1-2) : 27 - 30
  • [5] Origins of new protein-coding genes
    不详
    SCIENCE, 2021, 371 (6531) : 779 - 780
  • [6] PROMOTER SEQUENCES OF EUKARYOTIC PROTEIN-CODING GENES
    CHAMBON, P
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1981, 362 (04): : 381 - 381
  • [7] Computational prediction of eukaryotic protein-coding genes
    Zhang, MQ
    NATURE REVIEWS GENETICS, 2002, 3 (09) : 698 - 709
  • [8] Selfish DNA in protein-coding genes of Rickettsia
    Ogata, H
    Audic, S
    Barbe, V
    Artiguenave, F
    Fournier, PE
    Raoult, D
    Claverie, JM
    SCIENCE, 2000, 290 (5490) : 347 - 350
  • [9] Quantifying the Mutational Robustness of Protein-Coding Genes
    Ferrada, Evandro
    JOURNAL OF MOLECULAR EVOLUTION, 2021, 89 (06) : 357 - 369
  • [10] INTRONS AND THE ORIGIN OF PROTEIN-CODING GENES - REPLY
    STOLTZFUS, A
    SPENCER, DF
    ZUKER, M
    LOGSDON, JM
    DOOLITTLE, WF
    SCIENCE, 1995, 268 (5215) : 1367 - 1369