Retrieval of surface PM2.5 mass concentrations over North China using visibility measurements and GEOS-Chem simulations

被引:15
|
作者
Li, Sixuan [1 ,2 ]
Chen, Lulu [3 ]
Huang, Gang [1 ,2 ,4 ]
Lin, Jintai [3 ]
Yan, Yingying [3 ]
Ni, Ruijing [3 ]
Huo, Yanfeng [5 ]
Wang, Jingxu [3 ]
Liu, Mengyao [3 ]
Weng, Hongjian [3 ]
Wang, Yonghong [6 ]
Wang, Zifa [2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100000, Peoples R China
[3] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China
[4] Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao 266237, Peoples R China
[5] Anhui Inst Meteorol Sci, Hefei 230031, Peoples R China
[6] Univ Helsinki, Fac Sci, Inst Atmospher & Earth Syst Res Phys, POB 64, FIN-00014 Helsinki, Finland
[7] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Visibility; Chemical transport model (CTM); PM2.5; Spatial pattern; Time series; North China plain (NCP); AEROSOL OPTICAL DEPTH; GROUND-LEVEL PM2.5; AIR-POLLUTION; SPATIOTEMPORAL VARIABILITY; MODEL; EMISSIONS; TRENDS; OZONE; TRANSPORT; NITROGEN;
D O I
10.1016/j.atmosenv.2019.117121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite much effort made in studying human health associated with fine particulate matter (PM2.5), our knowledge about PM2.5 and human health from a long-term perspective is still limited by inadequately long data. Here, we presented a novel method to retrieve surface PM2.5 mass concentrations using surface visibility measurements and GEOS-Chem model simulations. First, we used visibility measurements and the ratio of PM2.5 and aerosol extinction coefficient (AEC) in GEOS-Chem to calculate visibility-inferred PM2.5 at individual stations (SC-PM2.5). Then we merged SC-PM2.5 with the spatial pattern of GEOS-Chem modeled PM2.5 to obtain a gridded PM2.5 dataset (GC-PM2.5). We validated the GC-PM2.5 data over the North China Plain on a 0.3125 degrees longitude x 0.25 degrees latitude grid in January, April, July and October 2014, using ground-based PM2.5 measurements. The spatial patterns of temporally averaged PM2.5 mass concentrations are consistent between GC-PM2.5 and measured data with a correlation coefficient of 0.79 and a linear regression slope of 0.8. The spatial average GC-PM2.5 data reproduce the day-to-day variation of observed PM2.5 concentrations with a correlation coefficient of 0.96 and a slope of 1.0. The mean bias is less than 12 mu g/m(3) (<14%). Future research will validate the proposed method using multi-year data, for purpose of studying long-term PM2.5 variations and their health impacts since 1980.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Evaluating the sensitivity of fine particulate matter (PM2.5) simulations to chemical mechanism in WRF-Chem over Delhi
    Jat, Rajmal
    Jena, Chinmay
    Yadav, Prafull P.
    Govardhan, Gaurav
    Kalita, Gayatry
    Debnath, Sreyashi
    Gunwani, Preeti
    Acharja, Prodip
    Pawar, Pooja V.
    Sharma, Pratul
    Kulkarni, Santosh H.
    Kulkarni, Akshay
    Kaginalkar, Akshara
    Chate, Dilip M.
    Kumar, Rajesh
    Soni, Vijay Kumar
    Ghude, Sachin D.
    ATMOSPHERIC ENVIRONMENT, 2024, 323
  • [22] Validation and Calibration of CAMS PM2.5 Forecasts Using In Situ PM2.5 Measurements in China and United States
    Wu, Chengbo
    Li, Ke
    Bai, Kaixu
    REMOTE SENSING, 2020, 12 (22) : 1 - 19
  • [23] Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model
    Wang, Yuxi
    Cao, Le
    Zhang, Tong
    Kong, Haijiang
    ATMOSPHERE, 2023, 14 (02)
  • [24] Statistical predictability of wintertime PM2.5 concentrations over East Asia using simple linear regression
    Jeong, Jaein I.
    Park, Rokjin J.
    Yeh, Sang-Wook
    Roh, Joon-Woo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 776
  • [25] Evaluation of CMIP6 model simulations of PM2.5 and its components over China
    Ren, Fangxuan
    Lin, Jintai
    Xu, Chenghao
    Adeniran, Jamiu A.
    Wang, Jingxu
    Martin, Randall V.
    van Donkelaar, Aaron
    Hammer, Melanie S.
    Horowitz, Larry W.
    Turnock, Steven T.
    Oshima, Naga
    Zhang, Jie
    Bauer, Susanne
    Tsigaridis, Kostas
    Seland, Oyvind
    Nabat, Pierre
    Neubauer, David
    Strand, Gary
    van Noije, Twan
    Le Sager, Philippe
    Takemura, Toshihiko
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (12) : 4821 - 4836
  • [26] Impact of modified turbulent diffusion of PM2.5 aerosol in WRF-Chem simulations in eastern China
    Jia, Wenxing
    Zhang, Xiaoye
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (22) : 16827 - 16841
  • [27] The unintended consequence of SO2 and NO2 regulations over China: increase of ammonia levels and impact on PM2.5 concentrations
    Lachatre, Mathieu
    Fortems-Cheiney, Audrey
    Foret, Gilles
    Siour, Guillaume
    Dufour, Gaelle
    Clarisse, Lieven
    Clerbaux, Cathy
    Coheur, Pierre-Francois
    Van Damme, Martin
    Beekmann, Matthias
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (10) : 6701 - 6716
  • [28] Retrieval of Daily PM2.5 Concentrations Using Nonlinear Methods: A Case Study of the Beijing-Tianjin-Hebei Region, China
    Li, Lijuan
    Chen, Baozhang
    Zhang, Yanhu
    Zhao, Youzheng
    Xian, Yue
    Xu, Guang
    Zhang, Huifang
    Guo, Lifeng
    REMOTE SENSING, 2018, 10 (12)
  • [29] Assessment of PM2.5 concentrations over bright surfaces using MODIS satellite observations
    Sorek-Hamer, Meytar
    Kloog, Itai
    Koutrakis, Petros
    Strawa, Anthony W.
    Chatfield, Robert
    Cohen, Ayala
    Ridgway, William L.
    Broday, David M.
    REMOTE SENSING OF ENVIRONMENT, 2015, 163 : 180 - 185
  • [30] Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network
    Wang, Weilin
    Zhao, Suli
    Jiao, Limin
    Taylor, Michael
    Zhang, Boen
    Xu, Gang
    Hou, Haobo
    SCIENTIFIC REPORTS, 2019, 9 (1)