Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture

被引:8
|
作者
Mitsopoulos, Konstantinos [1 ]
Somers, Sterling [1 ]
Schooler, Joel [2 ]
Lebiere, Christian [1 ]
Pirolli, Peter [2 ]
Thomson, Robert [1 ,3 ]
机构
[1] Carnegie Mellon Univ, Psychol Dept, Pittsburgh, PA USA
[2] Inst Human & Machine Cognit, Pensacola, FL USA
[3] US Mil Acad, Army Cyber Inst, West Point, NY 10996 USA
关键词
Explainable artificial intelligence; Cognitive modeling; Common ground; Salience; Instance-based learning; Deep reinforcement learning; BLACK-BOX; DECISIONS; MODELS; GO;
D O I
10.1111/tops.12573
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
We argue that cognitive models can provide a common ground between human users and deep reinforcement learning (Deep RL) algorithms for purposes of explainable artificial intelligence (AI). Casting both the human and learner as cognitive models provides common mechanisms to compare and understand their underlying decision-making processes. This common grounding allows us to identify divergences and explain the learner's behavior in human understandable terms. We present novel salience techniques that highlight the most relevant features in each model's decision-making, as well as examples of this technique in common training environments such as Starcraft II and an OpenAI gridworld.
引用
收藏
页码:756 / 779
页数:24
相关论文
共 50 条
  • [1] A Procedural Constructive Learning Mechanism with Deep Reinforcement Learning for Cognitive Agents
    Rossi, Leonardo de Lellis
    Rohmer, Eric
    Costa, Paula Dornhofer Paro
    Colombini, Esther Luna
    Simoes, Alexandre da Silva
    Gudwin, Ricardo Ribeiro
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (01)
  • [2] A Procedural Constructive Learning Mechanism with Deep Reinforcement Learning for Cognitive Agents
    Leonardo de Lellis Rossi
    Eric Rohmer
    Paula Dornhofer Paro Costa
    Esther Luna Colombini
    Alexandre da Silva Simões
    Ricardo Ribeiro Gudwin
    Journal of Intelligent & Robotic Systems, 2024, 110
  • [3] Coordinated behavior of cooperative agents using deep reinforcement learning
    Diallo, Elhadji Amadou Oury
    Sugiyama, Ayumi
    Sugawara, Toshiharu
    NEUROCOMPUTING, 2020, 396 : 230 - 240
  • [4] GBDT Modeling of Deep Reinforcement Learning Agents Using Distillation
    Hatano, Toshiki
    Tsuneda, Toi
    Suzuki, Yuta
    Imade, Kuniyasu
    Shesimo, Kazuki
    Yamane, Satoshi
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2021,
  • [5] Formulation of Deep Reinforcement Learning Architecture Toward Autonomous Driving for On-Ramp Merge
    Wang, Pin
    Chan, Ching-Yao
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [6] A Survey on Visual Navigation for Artificial Agents With Deep Reinforcement Learning
    Zeng, Fanyu
    Wang, Chen
    Ge, Shuzhi Sam
    IEEE ACCESS, 2020, 8 : 135426 - 135442
  • [7] Perspective Taking in Deep Reinforcement Learning Agents
    Labash, Aqeel
    Aru, Jaan
    Matiisen, Tambet
    Tampuu, Ardi
    Vicente, Raul
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14 (14)
  • [8] Goal Modelling for Deep Reinforcement Learning Agents
    Leung, Jonathan
    Shen, Zhiqi
    Zeng, Zhiwei
    Miao, Chunyan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 271 - 286
  • [9] Cognitive Radio Spectrum Sensing and Prediction Using Deep Reinforcement Learning
    Jalil, Syed Qaisar
    Chalup, Stephan
    Rehmani, Mubashir Husain
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] Deep reinforcement learning agents for dynamic spectrum access in television whitespace cognitive radio networks
    Ukpong, Udeme C.
    Idowu-Bismark, Olabode
    Adetiba, Emmanuel
    Kala, Jules R.
    Owolabi, Emmanuel
    Oshin, Oluwadamilola
    Abayomi, Abdultaofeek
    Dare, Oluwatobi E.
    SCIENTIFIC AFRICAN, 2025, 27