Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.: 2.: Charge density, band edge shifts, and quantification of recombination losses at short circuit

被引:469
作者
O'Regan, Brian C.
Durrant, James R.
Sommeling, Paul M.
Bakker, Nicolaas J.
机构
[1] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[2] Netherlands Energy Res Ctr, NL-1755 ZG Petten, Netherlands
关键词
D O I
10.1021/jp073056p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemical bath deposition of TiO2 from TiCl4 is an often used treatment that improves the photocurrent from dye-sensitized TiO2 solar cells. In this paper, charge density and kinetic data are used to show that the main effects of this treatment are an 80 mV downward shift in the TiO2 conduction band edge potential and a 20-fold decrease in the electron/electrolyte recombination rate constant. Together, these changes increase the quantum efficiency of charge separation at the interface, thus providing the observed increase in the photocurrent. The reduction in the recombination rate constant allows a greater concentration of electrons to accumulate at V,, thus offsetting the V,,c loss otherwise expected from the conduction band edge shift. Photocurrent transients and charge extraction data are used to show that the TiCl4 treatment has little effect on the transport of electrons at short circuit. The electron/electrolyte recombination rate constant at short circuit has been measured with the CCTPV (Constant Current Transient PhotoVoltage) technique. The results further confirm that any improvements in transport could not cause the beneficial effect of the TiCl4 treatment. Verification of the CCTPV technique is undertaken by comparison to transient absorption and by a model of the technique. Charge separation in dye-sensitized cells concerns two steps, charge injection and dye regeneration. Transient optical experiments to determine which process is improved by the TiCl4 treatment are discussed.
引用
收藏
页码:14001 / 14010
页数:10
相关论文
共 34 条
[1]   TITANIA AND ALUMINA CERAMIC MEMBRANES [J].
ANDERSON, MA ;
GIESELMANN, MJ ;
XU, QY .
JOURNAL OF MEMBRANE SCIENCE, 1988, 39 (03) :243-258
[2]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[3]   Chemical diffusion coefficient of electrons in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2323-2332
[4]   Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells [J].
Boschloo, Gerrit ;
Haggman, Leif ;
Hagfeldt, Anders .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (26) :13144-13150
[5]   Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14394-14400
[6]   Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8916-8919
[7]   HIGH-MOBILITY N-TYPE CHARGE-CARRIERS IN LARGE SINGLE-CRYSTALS OF ANATASE (TIO2) [J].
FORRO, L ;
CHAUVET, O ;
EMIN, D ;
ZUPPIROLI, L ;
BERGER, H ;
LEVY, F .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (01) :633-635
[8]   Dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2003, 4 (02) :145-153
[9]   Orientation dependence of charge-transfer processes on TiO2 (anatase) single crystals [J].
Hengerer, R ;
Kavan, L ;
Krtil, P ;
Grätzel, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1467-1472
[10]  
KAY A, 1994, THESIS DEP CHEM