Identification of cadmium-binding proteins from rice (Oryza sativa L.)

被引:21
|
作者
Yu, Xiaoxia [1 ]
Wei, Shuai [2 ]
Yang, Yunxia [3 ]
Ding, Zundan [1 ]
Wang, Qian [4 ]
Zhao, Jintong [1 ]
Liu, Xiaoqing [1 ]
Chu, Xiaoyu [1 ]
Tian, Jian [1 ]
Wu, Ningfeng [1 ]
Fan, Yunliu [1 ]
机构
[1] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
[2] Chinese Acad Agr Sci, Inst Agroprod Proc Sci & Technol, Beijing 100193, Peoples R China
[3] Chinese Acad Agr Sci, Inst Qual Stand & Testing Technol Agroprod, Beijing 100081, Peoples R China
[4] Hebei Agr Univ, Coll Life Sci, Baoding, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Cadmium-binding proteins; Metallothionein; Rice; Bioremediation; METAL AFFINITY-CHROMATOGRAPHY; METALLOTHIONEIN ISOFORM OSMTI-1B; HETEROLOGOUS EXPRESSION; CELLULAR MECHANISMS; HEAVY-METALS; GENE; RESISTANCE; DETOXIFICATION; TOXICITY; SURFACE;
D O I
10.1016/j.ijbiomac.2018.07.190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metal-binding proteins play an important role in maintaining intracellular metal homeostasis and eliminating heavy metal toxification. Many metallothioneins (MTs) have been isolated from mammalian sources, which are a family of low molecular weight metal-binding proteins that are rich in cysteine. However, plants contain a different type of cadmium-binding protein that contain fewer cysteine residues. In this study, cadmium affinity chromatography coupled with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has been used to separate and identify cadmium-binding proteins from different parts (root, stem, leaf and grain) of rice (Oryza sativa L) cultivated under cadmium stress conditions. Seven cadmium-binding proteins with low isoelectric points containing relatively few cysteine residues were chosen for expression in Escherichia coli. The cadmium removal efficiency of protein A3AGZ4 (OsJ_10480) from Escherichia coli Delta zntA-BL21 was the highest (57.35%), which compares favorably with the cadmium removal efficiency of metallothionein MT (48.99%, rat from mouse,) and SMT (55.84%, smt from Sinopotamon honanense). In addition, for the strain A3AGZ4-Delta zntA-BL21, most of the bound cadmium was found to accumulate in the cytoplasm and not the cell wall. These results indicate that these plant proteins can bind cadmium to reduce heavy metal toxicity, thus contributing towards bioremediation of cadmium in the environment. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 50 条
  • [11] Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.)
    Zhao Xiu-feng
    Chen Lin
    Rehmani, Muhammad I. A.
    Wang Qiang-sheng
    Wang Shao-hua
    Hou Peng-fu
    Li Gang-hua
    Ding Yan-feng
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2013, 12 (09) : 1540 - 1550
  • [12] Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.)
    Huang Yizong
    Hu Ying
    Liu Yunxia
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2009, 21 (05) : 647 - 653
  • [13] Effect of selenium on cadmium uptake, translocation and accumulation in rice (Oryza sativa L.)
    Li, H. F.
    Wan, Y. N.
    Wang, Q.
    Yu, Y.
    SELENIUM RESEARCH FOR ENVIRONMENT AND HUMAN HEALTH: PERSPECTIVES, TECHNOLOGIES AND ADVANCEMENTS, 2020, : 135 - 136
  • [14] Overexpression of OsABCG48 Lowers Cadmium in Rice (Oryza sativa L.)
    Cai, Xingzhe
    Wang, Meng
    Jiang, Yucong
    Wang, Changhu
    Ow, David W.
    AGRONOMY-BASEL, 2021, 11 (05):
  • [15] Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.)
    Choi, MS
    Kim, MC
    Yoo, JH
    Moon, BC
    Koo, SC
    Park, BO
    Lee, JH
    Koo, YD
    Han, HJ
    Lee, SY
    Chung, WS
    Lim, CO
    Cho, MJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (49) : 40820 - 40831
  • [16] A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L.)
    Han, Ruixia
    Wang, Zhe
    Wang, Shuqing
    Sun, Guoxin
    Xiao, Zufei
    Hao, Yilong
    Nriagu, Jerome
    Teng, H. Henry
    Li, Gang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 896
  • [17] Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.)
    ZHAO Xiu-feng
    CHEN Lin
    Muhammad I A Rehmani
    WANG Qiang-sheng
    WANG Shao-hua
    HOU Peng-fu
    LI Gang-hua
    DING Yan-feng
    Journal of Integrative Agriculture, 2013, 12 (09) : 1540 - 1550
  • [18] Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.)
    Xie, Pan-pan
    Deng, Juan-wei
    Zhang, Hui-min
    Ma, You-hua
    Cao, De-ju
    Ma, Ru-xiao
    Liu, Ren-jing
    Liu, Cheng
    Liang, Yue-gan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2015, 122 : 392 - 398
  • [19] Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings
    Hsu, YT
    Kao, CH
    PLANT CELL AND ENVIRONMENT, 2003, 26 (06): : 867 - 874
  • [20] Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.)
    Zhang, Jialiang
    Zhu, Yanchun
    Yu, Lijuan
    Yang, Meng
    Zou, Xiao
    Yin, Changxi
    Lin, Yongjun
    CELLS, 2022, 11 (03)