Effects of uneven vertical distribution of soil salinity under a buried straw layer on the growth, fruit yield, and fruit quality of tomato plants

被引:55
|
作者
Chen, Sheng [1 ]
Zhang, Zhanyu [1 ]
Wang, Zhenchang [1 ]
Guo, Xiangping [1 ]
Liu, Minhao [2 ]
Hamoud, Yousef Alhaj [1 ]
Zheng, Jiechen [1 ]
Qiu, Rangjian [3 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China
[2] Dev Ctr Sci & Technol Rural Water Resources, Dept Water Resources fiangsu Prov, Nanjing 210029, Jiangsu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Coll Appl Meteorol, Jiangsu Prov Key Lab Agr Meteorol, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Salinity; Unequal salt distribution; Tomato; Root growth; Yield; Quality; Vertical direction; LYCOPERSICON-ESCULENTUM MILL; WATER-USE EFFICIENCY; SPLIT ROOT-SYSTEM; BLOSSOM-END ROT; IRRIGATION; ZONE; STRESS; CALCIUM; ABA; L;
D O I
10.1016/j.scienta.2016.03.024
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Soil salinity is often heterogeneous, but plant response to uneven salt distributions in the vertical direction (USDVD) of the root-zone under buried straw layer is seldom studied in tomato (Solanum lycopersicum Lvar. Yazhoufenwang). Our objective in this study was to evaluate the effects of USDVD under a buried straw layer on changes in water consumption, root distribution, yield, fruit quality, K+ Na+, Ca2+ concentrations of leaves and fruits as well as stable carbon isotopic compositions (VC) of leaves for tomato plants grown in the greenhouse. To achieve this objective, pot experiments were conducted from April to July in 2014 and 2015. The treatments, Tin, T-2:4 and T-3:3, were established by setting the upper soil layer with EC1:5 (the electrical conductivity of a 1:5 dry soil: water mixture) 0.38 ms cm(-1), 038 ms cm(-1), 0.76 ms cm(-1) and 1.14ms cm(-1), respectively, and the lower soil layer with EC1:5 0.38 ms cm(-1), 1.90 ms cm(-1), 1.52 ms cm(-1), and 1.14ms cm(-1), respectively. In addition, a capillary barrier, made of straw, at a depth of 17 cm and with a thickness of 3 cm, was set between the upper and lower soil profile. The roots could penetrate through the straw layer, even though the soil salinity in the lower soil layer was relatively high (T-1:3). Compared to equal salinity distribution treatments (Tin and T-3:3), there was a significant compensatory water uptake and root growth from the low salinity soil profile under USDVD treatments (T-1:5 and T-2:4). In 2014, the water consumption and root density in the upper soil layer under USDVD treatments (Ti:s and T2:4) were 1.20 times and 1.38 times those of the equal salinity distribution treatments (Tin and T33), respectively. The Na* concentrations of leaves for Tis and T-2:4 were 15.1% and 48.9% of T-33, respectively, whereas the lc concentrations of leaves for Ti:5 and T2:4 were 2.1 times and 1.4 times that of T-3:3, respectively, resulting in significantly higher K+/Na+ ratios for Ti:s (10.17) and T2:4 (2.06) than T-3:3 (0.72); the delta C-13 value of T-3:3 (-28.46) was significantly higher than that of Tts (-29.17), whereas there was no significant difference for 613C between 113 and T-1:1 (-29.12). Across the two years, the average yields of Ti3, T2:4 and T3:3 were 20.3%, 47.1%, and 64.9% lower than that of Tin, respectively, whereas the soluble sugar contents of the fruits in T-1:5, T-2:4 and T-3:3 were 21.3%, 76.5% and 97.6% higher than that of Ti:i. The overall results suggest that the USDVD treatments under a buried straw layer could relieve the salt stress and benefit the quality and quantity of tomato plants grown in saline soil. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [21] Effects of regulated deficit irrigation on soil salinity, physiological processes and fruit quality of gray jujube under desert conditions
    Liu, Zhipeng
    Zhu, Chengli
    Wu, Shuyu
    Guo, Weihua
    Abudushalamu, Yitikaer
    Jiao, Xiyun
    Gao, Shipei
    Wang, Jie
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2019, 12 (03) : 52 - 59
  • [22] Effects of Endogenous Melatonin Deficiency on the Growth, Productivity, and Fruit Quality Properties of Tomato Plants
    He, Zhuo
    Wen, Cen
    Xu, Wen
    HORTICULTURAE, 2023, 9 (08)
  • [23] Matter, fruit yield and the distribution of calcium and oxalic acid contents in the upper and lower tissues of tomato plant in salinity stress
    Topçuoglu, B
    Kütük, C
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON TECHNIQUES TO CONTROL SALINATION FOR HORTICULTURAL PRODUCTIVITY, 2002, (573): : 449 - 454
  • [24] Coupled mechanisms of water deficit and soil salinity affecting tomato fruit growth
    Zhang, Xianbo
    Yang, Hui
    Du, Taisheng
    AGRICULTURAL WATER MANAGEMENT, 2024, 295
  • [25] Interactive Effects of Iron and Photoperiods on Tomato Plant Growth and Fruit Quality
    Zhang, Yi
    Liang, Yi
    Han, Jing
    Hu, Xiaohui
    Li, Xiaojing
    Zhao, Hailiang
    Bai, Longqiang
    Shi, Yu
    Ahammed, Golam Jalal
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (01) : 376 - 389
  • [26] TOMATO FRUIT YIELDS AND QUALITY UNDER WATER DEFICIT AND SALINITY
    MITCHELL, JP
    SHENNAN, C
    GRATTAN, SR
    MAY, DM
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 1991, 116 (02) : 215 - 221
  • [27] Yield and fruit quality in processing tomato under partial rootzone drying
    Zegbe, J. A.
    Behboudian, M. H.
    Clothier, B. E.
    EUROPEAN JOURNAL OF HORTICULTURAL SCIENCE, 2006, 71 (06) : 252 - 258
  • [28] Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum)
    Gutierrez-Miceli, Federico A.
    Santiago-Borraz, Jorge
    Montes Molina, Joaquin Adolfo
    Nafate, Camerino Carlos
    Abud-Archila, Miguel
    Oliva Llaven, Maria Angela
    Rincon-Rosales, Reiner
    Dendooven, Luc
    BIORESOURCE TECHNOLOGY, 2007, 98 (15) : 2781 - 2786
  • [29] Effects of Silicon on Growth, Yield and Fruit Quality of Cantaloupe under Drought Stress
    Alam, Ashraful
    Hariyanto, Bambang
    Ullah, Hayat
    Salin, Krishna R.
    Datta, Avishek
    SILICON, 2021, 13 (09) : 3153 - 3162
  • [30] Effeds of ammonium to nitrate ratio and salinity on yield and fruit quality of large and small tomato fruit hybrids
    Ben-Oliel, G
    Kant, S
    Naim, M
    Rabinowitch, HD
    Takeoka, GR
    Buttery, RG
    Kafkafi, U
    JOURNAL OF PLANT NUTRITION, 2004, 27 (10) : 1795 - 1812