Projectively flat connections and flat connections on homogeneous spaces

被引:0
|
作者
Urakawa, Hajime [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Div Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
projectively flat connection; flat connection; reductive homogeneous space; symmetric space; simple Lie group;
D O I
10.14492/hokmj/1277385658
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a correspondence between the set of all G-invariant projectively flat connections on a homogeneous space M = G/K, and the one of all (G) over tilde -invariant flat connections on homogeneous spaces (M) over tilde = (G) over tilde /K, where (G) over tilde is a central extension of G (Theorem 3.3).
引用
收藏
页码:139 / 155
页数:17
相关论文
共 50 条
  • [21] Smoothing maps into algebraic sets and spaces of flat connections
    Thomas Baird
    Daniel A. Ramras
    Geometriae Dedicata, 2015, 174 : 359 - 374
  • [22] FLAT CONNECTIONS AND POLYUBLES
    FOCK, VV
    ROSLY, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 95 (02) : 526 - 534
  • [23] Principal flat connections on second order tangent spaces
    Popescu, Marcela
    Popescu, Paul
    BSG PROCEEDINGS 17 - PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF DIFFERENTIAL GEOMETRY AND DYNAMICAL SYSTEMS (DGDS-2009), 2010, : 178 - 182
  • [24] Vortices and flat connections
    Nasir, SM
    PHYSICS LETTERS B, 1998, 419 (1-4) : 253 - 257
  • [25] ON A CERTAIN CLASS OF HOMOGENEOUS PROJECTIVELY FLAT MANIFOLDS
    NOMIZU, K
    PINKALL, U
    TOHOKU MATHEMATICAL JOURNAL, 1987, 39 (03) : 407 - 427
  • [26] On the connectedness of moduli spaces of flat connections over compact surfaces
    Ho, NK
    Liu, CCM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (06): : 1228 - 1236
  • [27] Batalin-Vilkovisky structures on moduli spaces of flat connections
    Alekseev, Anton
    Naef, Florian
    Pulmann, Jan
    Severa, Pavol
    ADVANCES IN MATHEMATICS, 2024, 443
  • [28] MODULI SPACES OF FLAT CONNECTIONS AND MORITA EQUIVALENCE OF QUANTUM TORI
    Severa, Pavol
    DOCUMENTA MATHEMATICA, 2012, 17 : 607 - 625
  • [29] AN EXPLICIT DESCRIPTION OF THE SYMPLECTIC STRUCTURE OF MODULI SPACES OF FLAT CONNECTIONS
    KING, C
    SENGUPTA, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) : 5338 - 5353
  • [30] Conditions of smoothness of moduli spaces of flat connections and of character varieties
    Nan-Kuo Ho
    Graeme Wilkin
    Siye Wu
    Mathematische Zeitschrift, 2019, 293 : 1 - 23