Human Action Recognition Using Hybrid Centroid Canonical Correlation Analysis

被引:4
|
作者
El Madany, Nour El Din [1 ]
He, Yifeng [1 ]
Guan, Ling [1 ]
机构
[1] Ryerson Univ, Elect & Comp Dept, Toronto, ON, Canada
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2015年
关键词
Hybrid Centroid Canonical Correlation Analysis (HCCCA); Fusion; Human action recognition; FUSION;
D O I
10.1109/ISM.2015.118
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human action recognition is a hot research topic in image analysis and computer vision. In this paper, we propose Hybrid Centroid Canonical Correlation Analysis (HCCCA) and multi-set HCCCA for multimodal information analysis and fusion. Furthermore, we present a novel human action recognition framework by using multi-set HCCCA to fuse multimodal features, which include the hierarchal pyramid Depth Motion Map (DMM) for the depth images, the Histogram of Oriented Displacement (HOD) for the skeleton, and the statistical measurements for the accelerometer. The proposed framework was evaluated using two datasets MSR Action 3D dataset and UTD multimodal human action dataset. The experimental results demonstrated that the proposed framework can achieve a higher average accuracy compared to several existing methods.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [11] Human Action Recognition Using Hybrid Deep Evolving Neural Networks
    Dasari, Pavan
    Zhang, Li
    Yu, Yonghong
    Huang, Haoqian
    Gao, Rong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [12] Robust Human Action Recognition Using Improved BOW and Hybrid Features
    Viet Vo
    Ngoc Ly
    2012 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2012, : 224 - 229
  • [13] Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
    Ahmad, Ahmad Yahiya Ahmad Bani
    Alzubi, Jafar
    James, Sophers
    Nyangaresi, Vincent Omollo
    Kutralakani, Chanthirasekaran
    Krishnan, Anguraju
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 4791 - 4812
  • [14] Human action recognition based on hybrid features
    Zhong, Ju
    Liu, Huawen
    Lin, Chunli
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1188 - +
  • [15] Incremental discriminant-analysis of canonical correlations for action recognition
    Wu, Xinxiao
    Jia, Yunde
    Liang, Wei
    PATTERN RECOGNITION, 2010, 43 (12) : 4190 - 4197
  • [16] Improving Human Action Recognition Using Hierarchical Features And Multiple Classifier Ensembles
    Bulbul, Mohammad Farhad
    Islam, Saiful
    Zhou, Yatong
    Ali, Hazrat
    COMPUTER JOURNAL, 2021, 64 (11) : 1633 - 1655
  • [17] Learning correlations for human action recognition in videos
    Yi, Yun
    Wang, Hanli
    Zhang, Bowen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) : 18891 - 18913
  • [18] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102
  • [19] A Bibliometric Analysis of Human Action Recognition
    Aryanfar, Alihossein
    Halin, Alfian Abdul
    Yaakob, Razali
    Sulaiman, Md Nasir
    Mohammadpour, Leila
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 1, 2018, 15 : 419 - 427
  • [20] Human action recognition using MHI and SHI based GLAC features and Collaborative Representation Classifier
    Bulbul, Mohammad Farhad
    Islam, Saiful
    Ali, Hazrat
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (04) : 3385 - 3401