An optical coherence photoacoustic microscopy system using a fiber optic sensor

被引:11
作者
Deng, Shiyu [1 ]
Haindl, Richard [1 ]
Zhang, Edward [2 ,3 ]
Beard, Paul [2 ,3 ]
Scheuringer, Eva [4 ]
Sturtzel, Caterina [4 ]
Li, Qian [1 ]
Deloria, Abigail J. [1 ]
Sattmann, Harald [1 ]
Leitgeb, Rainer A. [1 ]
Yuan, Yi [5 ]
Schmetterer, Leopold [1 ,6 ,7 ,8 ,9 ,10 ,11 ]
Pramanik, Manojit [8 ]
Distel, Martin [4 ]
Drexler, Wolfgang [4 ]
Liu, Mengyang [4 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Wahringer Gurtel 18-20,AKH 4L, A-1090 Vienna, Austria
[2] UCL, Dept Med Phys & Biomed Engn, Gower St, London WC1E 6BT, England
[3] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, Gower St, London WC1E 6BT, England
[4] St Anna Childrens Canc Res Inst, Innovat Canc Models, Zimmermannpl 10, A-1090 Vienna, Austria
[5] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[6] Med Univ Vienna, Dept Clin Pharmacol, Wahringer Gurtel 18-20,Floor 6, A-1090 Vienna, Austria
[7] Singapore Eye Res Inst, Acad Bldg,20 Coll Rd,Discovery Tower,Level 6, Singapore 169856, Singapore
[8] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Drive, Singapore 637459, Singapore
[9] SERI NTU Adv Ocular Engn STANCE Lab, Singapore, Singapore
[10] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, 8 Coll Rd, Singapore 169857, Singapore
[11] Inst Mol & Clin Ophthalmol Basel, Mittlere Str 91, CH-4031 Basel, Switzerland
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
IN-VIVO; TOMOGRAPHY; ZEBRAFISH; MODEL;
D O I
10.1063/5.0059351
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, a novel fiber optic sensor based on Fabry-Perot interferometry is adopted in an optical coherence photoacoustic microscopy (OC-PAM) system to enable high-resolution in vivo imaging. The complete OC-PAM system is characterized using the fiber optic sensor for photoacoustic measurement. After characterization, the performance of the system is evaluated by imaging zebrafish larvae in vivo. With a lateral resolution of 3.4 mu m and an axial resolution of 3.7 mu m in air, the optical coherence microscopy subsystem visualizes the anatomy of the zebrafish larvae. The photoacoustic microscopy subsystem reveals the vasculature of the zebrafish larvae with a lateral resolution of 1.9 mu m and an axial resolution of 37.3 mu m. As the two modalities share the same sample arm, we obtain inherently co-registered morphological and vascular images. This OC-PAM system provides comprehensive information on the anatomy and vasculature of the zebrafish larvae. Featuring compactness, broad detection bandwidth, and wide detection angle, the fiber optic sensor enables a large field of view with a static sensor position. We verified the feasibility of the fiber optic sensor for dual-modality in vivo imaging. The OC-PAM system, as a non-invasive imaging method, demonstrates its superiority in the investigation of zebrafish larvae, an animal model with increasing significance in developmental biology and disease research. This technique can also be applied for functional as well as longitudinal studies in the future.& nbsp; (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).</p>
引用
收藏
页数:11
相关论文
共 50 条
[31]   Rat brain imaging using full field optical coherence microscopy with short multimode fiber probe [J].
Sato, Manabu ;
Saito, Daisuke ;
Kurotani, Reiko ;
Abe, Hiroyuki ;
Kawauchi, Satoko ;
Sato, Shunichi ;
Nishidate, Izumi .
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXI, 2017, 10053
[32]   Automated Laser-Fiber Coupling Module for Optical-Resolution Photoacoustic Microscopy [J].
Han, Seongyi ;
Kye, Hyunjun ;
Kim, Chang-Seok ;
Kim, Tae-Kyoung ;
Yoo, Jinwoo ;
Kim, Jeesu .
SENSORS, 2023, 23 (14)
[33]   Optical coherence photoacoustic microscopy (OC-PAM) with an intensity-modulated continuous-wave broadband light source [J].
Liu, Xiaojing ;
Wen, Rong ;
Li, Yiwen ;
Jiao, Shuliang .
JOURNAL OF OPTICS, 2016, 18 (06)
[34]   Multimodal optical coherence/photoacoustic tomography of skin [J].
Alex, Aneesh ;
Zhang, Edward Z. ;
Povazay, Boris ;
Laufer, Jan ;
Hofer, Bernd ;
Glittenberg, Carl ;
Hermann, Boris ;
Beard, Paul C. ;
Drexler, Wolfgang .
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XV, 2011, 7889
[35]   Objective-free optical-resolution photoacoustic microscopy [J].
Kim, Chulhong ;
Park, Sungjo ;
Kim, Jongki ;
Lee, Sungrae ;
Lee, Changho ;
Jeon, Mansik ;
Kim, Jeehyun ;
Oh, Kyunghwan .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (01)
[36]   Effect of Light Scattering on Optical-Resolution Photoacoustic Microscopy [J].
Liu, Yan ;
Zhang, Chi ;
Hu, Song ;
Suzuki, Yuta ;
Xu, Zhun ;
Ferradal, Silvina ;
Wang, Lihong V. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2012, 2012, 8223
[37]   Developments in Optical Coherence Microscopy [J].
Rolland, J. P. ;
Meemon, P. ;
Thompson, K. P. ;
Murali, S. ;
Lee, K. S. .
OPTICAL DESIGN AND TESTING IV, 2010, 7849
[38]   Photoacoustic signal measurement using thin film Fabry-Perot optical interferometer for photoacoustic microscopy [J].
Park, Soongho ;
Eom, Jonghyun ;
Lee, Byeong Ha .
2015 IEEE SENSORS, 2015, :564-566
[39]   Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy [J].
Yang, Fan ;
Guo, Guangdi ;
Zheng, Shanguang ;
Fang, Hui ;
Min, Changjun ;
Song, Wei ;
Yuan, Xiaocong .
PHOTOACOUSTICS, 2021, 24
[40]   Fiber-optic polarization diversity detection for rotary probe optical coherence tomography [J].
Lee, Anthony M. D. ;
Pahlevaninezhad, Hamid ;
Yang, Victor X. D. ;
Lam, Stephen ;
MacAulay, Calum ;
Lane, Pierre .
OPTICS LETTERS, 2014, 39 (12) :3638-3641