Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis

被引:46
|
作者
Saadatpour, Assieh [1 ,2 ]
Guo, Guoji [3 ,4 ,5 ,6 ,7 ]
Orkin, Stuart H. [3 ,4 ,5 ,6 ,8 ]
Yuan, Guo-Cheng [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02215 USA
[5] Harvard Univ, Sch Med, Boston, MA 02215 USA
[6] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
[7] Zhejiang Univ, Sch Med, Ctr Stem Cell & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[8] Howard Hughes Med Inst, Boston, MA 02115 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 12期
关键词
ACUTE MYELOID-LEUKEMIA; MESSENGER-RNA-SEQ; STEM-CELLS; HEMATOPOIETIC STEM; MASS CYTOMETRY; PROGENITOR CELLS; SELF-RENEWAL; BLOOD STEM; IDENTIFICATION; HIERARCHY;
D O I
10.1186/s13059-014-0525-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: A fundamental challenge for cancer therapy is that each tumor contains a highly heterogeneous cell population whose structure and mechanistic underpinnings remain incompletely understood. Recent advances in single-cell gene expression profiling have created new possibilities to characterize this heterogeneity and to dissect the potential intra-cancer cellular hierarchy. Results: Here, we apply single-cell analysis to systematically characterize the heterogeneity within leukemic cells using the MLL-AF9 driven mouse model of acute myeloid leukemia. We start with fluorescence-activated cell sorting analysis with seven surface markers, and extend by using a multiplexing quantitative polymerase chain reaction approach to assay the transcriptional profile of a panel of 175 carefully selected genes in leukemic cells at the single-cell level. By employing a set of computational tools we find striking heterogeneity within leukemic cells. Mapping to the normal hematopoietic cellular hierarchy identifies two distinct subtypes of leukemic cells; one similar to granulocyte/monocyte progenitors and the other to macrophage and dendritic cells. Further functional experiments suggest that these subtypes differ in proliferation rates and clonal phenotypes. Finally, co-expression network analysis reveals similarities as well as organizational differences between leukemia and normal granulocyte/monocyte progenitor networks. Conclusions: Overall, our single-cell analysis pinpoints previously uncharacterized heterogeneity within leukemic cells and provides new insights into the molecular signatures of acute myeloid leukemia.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria
    Galbusera, Luca
    Bellement-Theroue, Gwendoline
    Urchueguia, Arantxa
    Julou, Thomas
    van Nimwegen, Erik
    PLOS ONE, 2020, 15 (10):
  • [42] Single-cell analysis: Understanding infected cell heterogeneity
    Alberdi, Lucrecia
    Meresse, Stephane
    VIRULENCE, 2017, 8 (06) : 605 - 606
  • [43] Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation
    Labriola, Nicholas R.
    Darling, Eric M.
    JOURNAL OF BIOMECHANICS, 2015, 48 (06) : 1058 - 1066
  • [44] SINGLE-CELL ANALYSIS AND MODELLING OF CELL POPULATION HETEROGENEITY
    Samusik, Nikolay
    Aghaeepour, Nima
    Bendall, Sean
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 557 - 563
  • [45] Single-cell Gene Expression Using Multiplex RT-qPCR to Characterize Heterogeneity of Rare Lymphoid Populations
    Perchet, Thibaut
    Chea, Sylvestre
    Hasan, Milena
    Cumano, Ana
    Golub, Rachel
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (119):
  • [46] Single-Cell Transcriptomic Analysis of Tumor Heterogeneity
    Levitin, Hanna Mendes
    Yuan, Jinzhou
    Sims, Peter A.
    TRENDS IN CANCER, 2018, 4 (04): : 264 - 268
  • [47] Deciphering Metabolic Heterogeneity by Single-Cell Analysis
    Evers, Tom M. J.
    Hochane, Mazene
    Tans, Sander J.
    Heeren, Ron M. A.
    Semrau, Stefan
    Nemes, Peter
    Mashaghi, Alireza
    ANALYTICAL CHEMISTRY, 2019, 91 (21) : 13314 - 13323
  • [48] Navigating Heterogeneity in Genome Editing Outcomes Using Single-Cell Analysis
    Enzmann, Brittany
    Gulati, Saurabh
    Li, Chieh-Yuan
    Miltz, Benjamin
    Ayaz, Qawer
    Nguyen, Joanne
    Wang, Shu
    Marin, Jacqueline
    Thompson, Kathryn
    Geller, Benjamin
    Schroeder, Benjamin
    MOLECULAR THERAPY, 2024, 32 (04) : 789 - 789
  • [49] Measurements of gene expression in single, living cells enable molecular analysis of endocrine cell heterogeneity
    Castaño, JP
    Faught, WJ
    Frawley, LS
    TRENDS IN COMPARATIVE ENDOCRINOLOGY AND NEUROBIOLOGY: FROM MOLECULAR TO INTEGRATIVE BIOLOGY, 1998, 839 : 336 - 340
  • [50] Exploring cancer stem cells heterogeneity via single cell multiplex gene expression analysis
    Azizi, Ebrahim
    Fouladdel, Shamileh
    Deol, Yadwinder S.
    Bender, Jonathan
    McDermott, Sean
    Jiang, Hui
    Sehl, Mary
    Clouthier, Shawn G.
    Nagrath, Sunitha
    Wicha, Max S.
    CANCER RESEARCH, 2014, 74 (19)