Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis

被引:46
|
作者
Saadatpour, Assieh [1 ,2 ]
Guo, Guoji [3 ,4 ,5 ,6 ,7 ]
Orkin, Stuart H. [3 ,4 ,5 ,6 ,8 ]
Yuan, Guo-Cheng [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02215 USA
[5] Harvard Univ, Sch Med, Boston, MA 02215 USA
[6] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
[7] Zhejiang Univ, Sch Med, Ctr Stem Cell & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[8] Howard Hughes Med Inst, Boston, MA 02115 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 12期
关键词
ACUTE MYELOID-LEUKEMIA; MESSENGER-RNA-SEQ; STEM-CELLS; HEMATOPOIETIC STEM; MASS CYTOMETRY; PROGENITOR CELLS; SELF-RENEWAL; BLOOD STEM; IDENTIFICATION; HIERARCHY;
D O I
10.1186/s13059-014-0525-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: A fundamental challenge for cancer therapy is that each tumor contains a highly heterogeneous cell population whose structure and mechanistic underpinnings remain incompletely understood. Recent advances in single-cell gene expression profiling have created new possibilities to characterize this heterogeneity and to dissect the potential intra-cancer cellular hierarchy. Results: Here, we apply single-cell analysis to systematically characterize the heterogeneity within leukemic cells using the MLL-AF9 driven mouse model of acute myeloid leukemia. We start with fluorescence-activated cell sorting analysis with seven surface markers, and extend by using a multiplexing quantitative polymerase chain reaction approach to assay the transcriptional profile of a panel of 175 carefully selected genes in leukemic cells at the single-cell level. By employing a set of computational tools we find striking heterogeneity within leukemic cells. Mapping to the normal hematopoietic cellular hierarchy identifies two distinct subtypes of leukemic cells; one similar to granulocyte/monocyte progenitors and the other to macrophage and dendritic cells. Further functional experiments suggest that these subtypes differ in proliferation rates and clonal phenotypes. Finally, co-expression network analysis reveals similarities as well as organizational differences between leukemia and normal granulocyte/monocyte progenitor networks. Conclusions: Overall, our single-cell analysis pinpoints previously uncharacterized heterogeneity within leukemic cells and provides new insights into the molecular signatures of acute myeloid leukemia.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis
    Assieh Saadatpour
    Guoji Guo
    Stuart H Orkin
    Guo-Cheng Yuan
    Genome Biology, 15
  • [2] Streamlined analysis of heterogeneity in cell populations using single-cell gene expression profiling.
    May, A. P.
    Lebofsky, R.
    Leyrat, A.
    Fowler, B.
    Shuga, J.
    Chen, P.
    Wang, J.
    Toppani, D.
    Thu, M.
    Wang, M.
    West, J.
    Weaver, S.
    Jones, B.
    Kemp, D.
    Norris, M.
    Unger, M.
    Charn, T-H.
    Jones, B.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [3] Single-cell gene expression analysis
    Richardson, PJ
    Lee, K
    RADIATION RESEARCH, 2001, 156 (04) : 435 - 435
  • [4] Single-cell gene expression signatures reveal melanoma cell heterogeneity
    M Ennen
    C Keime
    D Kobi
    G Mengus
    D Lipsker
    C Thibault-Carpentier
    I Davidson
    Oncogene, 2015, 34 : 3251 - 3263
  • [5] Single-cell gene expression signatures reveal melanoma cell heterogeneity
    Ennen, M.
    Keime, C.
    Kobi, D.
    Mengus, G.
    Lipsker, D.
    Thibault-Carpentier, C.
    Davidson, I.
    ONCOGENE, 2015, 34 (25) : 3251 - 3263
  • [6] Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
    Miller, Brendan F.
    Bambah-Mukku, Dhananjay
    Dulac, Catherine
    Zhuang, Xiaowei
    Fan, Jean
    GENOME RESEARCH, 2021, 31 (10) : 1843 - 1855
  • [7] Single-cell gene expression analysis of cryopreserved equine bronchoalveolar cells
    Sage, Sophie E.
    Nicholson, Pamela
    Peters, Laureen M.
    Leeb, Tosso
    Jagannathan, Vidhya
    Gerber, Vinzenz
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [8] Characterizing efficient feature selection for single-cell expression analysis
    Cho, Juok
    Baik, Bukyung
    Nguyen, Hai C. T.
    Park, Daeui
    Nam, Dougu
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [9] Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells
    Tan, David W. M.
    Jensen, Kim B.
    Trotter, Matthew W. B.
    Connelly, John T.
    Broad, Simon
    Watt, Fiona M.
    DEVELOPMENT, 2013, 140 (07): : 1433 - 1444
  • [10] Characterizing cellular heterogeneity in fibrotic hypersensitivity pneumonitis by single-cell transcriptional analysis
    Junyi Wang
    Lei Zhang
    Li Luo
    Ping He
    Anying Xiong
    Manling Jiang
    Yao Liu
    Shengbin Liu
    Qin Ran
    Dehong Wu
    Ying Xiong
    Xiang He
    Guoping Li
    Cell Death Discovery, 8