ST-Hadoop: a MapReduce framework for spatio-temporal data

被引:53
|
作者
Alarabi, Louai [1 ]
Mokbel, Mohamed F. [1 ]
Musleh, Mashaal [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
MapReduce-based systems; Spatio-temporal systems; Spatio-temporal range query; Spatio-temporal nearest neighbor query; Spatio-temporal join query;
D O I
10.1007/s10707-018-0325-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents ST-Hadoop; the first full-fledged open-source MapReduce framework with a native support for spatio-temporal data. ST-Hadoop is a comprehensive extension to Hadoop and SpatialHadoop that injects spatio-temporal data awareness inside each of their layers, mainly, language, indexing, and operations layers. In the language layer, ST-Hadoop provides built in spatio-temporal data types and operations. In the indexing layer, ST-Hadoop spatiotemporally loads and divides data across computation nodes in Hadoop Distributed File System in a way that mimics spatio-temporal index structures, which result in achieving orders of magnitude better performance than Hadoop and SpatialHadoop when dealing with spatio-temporal data and queries. In the operations layer, ST-Hadoop shipped with support for three fundamental spatio-temporal queries, namely, spatio-temporal range, top-k nearest neighbor, and join queries. Extensibility of ST-Hadoop allows others to extend features and operations easily using similar approaches described in the paper. Extensive experiments conducted on large-scale dataset of size 10 TB that contains over 1 Billion spatio-temporal records, to show that ST-Hadoop achieves orders of magnitude better performance than Hadoop and SpaitalHadoop when dealing with spatio-temporal data and operations. The key idea behind the performance gained in ST-Hadoop is its ability in indexing spatio-temporal data within Hadoop Distributed File System.
引用
收藏
页码:785 / 813
页数:29
相关论文
共 50 条
  • [1] ST-Hadoop: A MapReduce Framework for Spatio-Temporal Data
    Alarabi, Louai
    Mokbel, Mohamed F.
    Musleh, Mashaal
    ADVANCES IN SPATIAL AND TEMPORAL DATABASES, SSTD 2017, 2017, 10411 : 84 - 104
  • [2] ST-Hadoop: a MapReduce framework for spatio-temporal data
    Louai Alarabi
    Mohamed F. Mokbel
    Mashaal Musleh
    GeoInformatica, 2018, 22 : 785 - 813
  • [3] A Demonstration of ST-Hadoop: A MapReduce Framework for Big Spatio-temporal Data
    Alarabi, Louai
    Mokbel, Mohamed F.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (12): : 1961 - 1964
  • [4] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198
  • [5] A spatio-temporal framework for managing archeological data
    Belussi, Alberto
    Migliorini, Sara
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2017, 80 (3-4) : 175 - 218
  • [6] A spatio-temporal framework for managing archeological data
    Alberto Belussi
    Sara Migliorini
    Annals of Mathematics and Artificial Intelligence, 2017, 80 : 175 - 218
  • [7] A framework for characterizing spatio-temporal data models
    Parent, C
    ADVANCES IN MULTIMEDIA AND DATABASES FOR THE NEW CENTURY: A SWISS/JAPANESE PERSPECTIVE, 2000, 10 : 89 - 98
  • [8] Scientific data processing framework for Hadoop MapReduce
    Department of Computer and Information, Xinxiang University, Xinxiang, China
    1600, Journal of Chemical and Pharmaceutical Research, 3/668 Malviya Nagar, Jaipur, Rajasthan, India (06):
  • [9] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254
  • [10] A Framework for Scalable Correlation of Spatio-temporal Event Data
    Hagedorn, Stefan
    Sattler, Kai-Uwe
    Gertz, Michael
    DATA SCIENCE, 2015, 9147 : 9 - 15