Generalized principal eigenvalues of convex nonlinear elliptic operators in RN

被引:1
作者
Biswas, Anup [1 ]
Roychowdhury, Prasun [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
关键词
Fully nonlinear operators; principal eigenvalue; Dirichlet problem; half-eigenvalues; uniqueness; MAXIMUM PRINCIPLE; VARIATIONAL FORMULA; EQUATIONS; BIFURCATION; BOUNDARY;
D O I
10.1515/acv-2020-0035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the generalized eigenvalue problem in R-N for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 (2015), no. 6, 1014-1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions.
引用
收藏
页码:673 / 691
页数:19
相关论文
共 27 条
[1]  
Arapostathis A, 2020, Arxiv, DOI arXiv:1903.08346
[2]   A VARIATIONAL FORMULA FOR RISK-SENSITIVE CONTROL OF DIFFUSIONS IN Rd [J].
Arapostathis, Ari ;
Biswas, Anup .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (01) :85-103
[3]   Strict monotonicity of principal eigenvalues of elliptic operators in Rd and risk-sensitive control [J].
Arapostathis, Ari ;
Biswas, Anup ;
Saha, Subhamay .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 124 :169-219
[4]   CERTAIN LIOUVILLE PROPERTIES OF EIGENFUNCTIONS OF ELLIPTIC OPERATORS [J].
Arapostathis, Ari ;
Biswas, Anup ;
Ganguly, Debdip .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) :4377-4409
[5]   Singular Solutions of Fully Nonlinear Elliptic Equations and Applications [J].
Armstrong, Scott N. ;
Sirakov, Boyan ;
Smart, Charles K. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :345-394
[6]   The Dirichlet problem for the Bellman equation at resonance [J].
Armstrong, Scott N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (03) :931-955
[7]   Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations [J].
Armstrong, Scott N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) :2958-2987
[8]  
Berestycki H, 2006, J EUR MATH SOC, V8, P195
[9]   SOME NONLINEAR STURM-LIOUVILLE PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (03) :375-390
[10]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92