Imaging electric conductivity with MRI

被引:0
|
作者
Voigt, T. [1 ]
Katscher, U. [2 ]
Findeklee, C. [2 ]
Doessel, O. [1 ]
机构
[1] Univ Karlsruhe, Inst Biomed Engn, Karlsruhe, Germany
[2] Sect Med Imaging Syst, Philips Res Europe Hamburg, Hamburg, Germany
来源
WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 2 - DIAGNOSTIC IMAGING | 2009年 / 25卷
关键词
Electric Conductivity; Magnetic Resonance Tomography; B1; mapping; IMPEDANCE TOMOGRAPHY MREIT; DIELECTRIC-PROPERTIES; MAGNETIC-RESONANCE; BIOLOGICAL TISSUES; CURRENT-DENSITY; STEADY-STATE; IN-VIVO; FREQUENCY; SYSTEM; FIELD;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The electric conductivity of human tissue could be used as an additional diagnostic parameter or might be helpful for the prediction of the local SAR during MR measurements. In this study, the approach "Electric Properties Tomography" (MR-EPT) is applied, which derives the patient's electric conductivity using a standard MR system. To this goal, the spatial transmit sensitivity distribution of the applied RF coil is measured. This sensitivity distribution represents the positive circularly polarized component of the magnetic field. It can be post-processed utilizing Faraday's and Ampere's law, yielding an estimation of the spatial distribution of the patient's electric conductivity. Thus, MR-EPT does not apply externally mounted electrodes, currents, or RF probes. In this study, phantom experiments underline the principle feasibility of MR-EPT. Furthermore, initial conductivity measurements in the brain allow distinguishing cerebro-spinal fluid from the surrounding grey and white matter.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
  • [31] MRI in imaging of rheumatic diseases: an overview for clinicians
    Eshed, I.
    Hermann, K. G. A.
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2018, 36 (05) : S10 - S15
  • [32] Initial study on in vivo conductivity mapping of breast cancer using MRI
    Shin, Jaewook
    Kim, Min Jung
    Lee, Joonsung
    Nam, Yoonho
    Kim, Min-oh
    Choi, Narae
    Kim, Sooyeon
    Kim, Dong-Hyun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (02) : 371 - 378
  • [33] 19F MRI Probes for Multimodal Imaging**
    Janasik, Dawid
    Krawczyk, Tomasz
    CHEMISTRY-A EUROPEAN JOURNAL, 2021,
  • [34] Brain development of infant and MRI by diffusion tensor imaging
    Dubois, J.
    Dehaene-Lambertz, G.
    Mangin, J. -F.
    Le Bihan, D.
    Hueppi, P. S.
    Hertz-Pannier, L.
    NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2012, 42 (1-2): : 1 - 9
  • [35] 19F MRI Probes for Multimodal Imaging
    Dawid, Janasik
    Krawczyk, Tomasz
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (05)
  • [36] A Dual-Modal Imaging Method Combining Ultrasound and Electromagnetism for Simultaneous Measurement of Tissue Elasticity and Electrical Conductivity
    Lin, Haoming
    Chen, Yi
    Xie, Siyuan
    Yu, Mengmeng
    Deng, Dingqian
    Sun, Tong
    Hu, Yuyang
    Chen, Mian
    Chen, Siping
    Chen, Xin
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (08) : 2499 - 2511
  • [37] The Impact of Anisotropy on the Accuracy of Conductivity Imaging: A Quantitative Validation Study
    Elsaid, Nahla M. H.
    Nachman, Adrian I.
    Ma, Weijing
    DeMonte, Tim P.
    Joy, Michael L. G.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (02) : 507 - 517
  • [38] Ion mobility imaging and contrast mechanism of apparent conductivity in MREIT
    Oh, Tong In
    Kim, Young Tae
    Minhas, Atul
    Seo, Jin Keun
    Kwon, Oh In
    Woo, Eung Je
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (07) : 2265 - 2277
  • [39] Image Reconstruction in Magnetic Resonance Conductivity Tensor Imaging (MRCTI)
    Degirmenci, Evren
    Eyuboglu, B. Murat
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) : 525 - 532
  • [40] Correlation of the anomalies in the electric field and electric conductivity of the lithosphere to earthquakes in Kamchatka
    Yu. F. Moroz
    T. A. Moroz
    Izvestiya, Physics of the Solid Earth, 2012, 48 : 287 - 296