An enhanced multi-objective evolutionary optimization algorithm with inverse model

被引:14
作者
Zhang, Zhechen [1 ]
Liu, Sanyang [1 ]
Gao, Weifeng [1 ]
Xu, Jingwei [2 ]
Zhu, Shengqi [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
[2] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Estimation of distribution algorithms (EDAs); Adaptive reference vector; Inverse modelling; Gaussian processes (GPs); Nonrandom grouping; RM-MEDA; DECOMPOSITION; SELECTION;
D O I
10.1016/j.ins.2020.03.111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-objective evolutionary algorithm based on the inverse model (IM-MOEA) is a popular method to solve multi-objective optimization problems (MOPs). However, IM-MOEA has some drawbacks such as low accuracy and difficulty in dealing with MOPs with irregular PFs. To address these issues, adaptive reference vector mechanism and nonrandom grouping strategy are employed in IM-MOEA, which enhances the reliability of the inverse model. In addition, a modified selection mechanism is used to choose candidate solutions. Further, an enhanced IM-MOEA with adaptive reference vectors and nonrandom grouping (AN-IMMOEA) is proposed in this paper. The experimental results on 27 MOPs indicate that the proposed method has a better performance than other MOEAs. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 147
页数:20
相关论文
共 50 条
[41]   Transfer learning based evolutionary algorithm framework for multi-objective optimization problems [J].
Huang, Jiaheng ;
Wen, Jiechang ;
Chen, Lei ;
Liu, Hai-Lin .
APPLIED INTELLIGENCE, 2023, 53 (14) :18085-18104
[42]   Evolutionary Large-Scale Multi-Objective Optimization: A Survey [J].
Tian, Ye ;
Si, Langchun ;
Zhang, Xingyi ;
Cheng, Ran ;
He, Cheng ;
Tan, Kay Chen ;
Jin, Yaochu .
ACM COMPUTING SURVEYS, 2021, 54 (08)
[43]   Regularity-based evolutionary multi-objective optimization review [J].
Lu, Yulan ;
Guo, Xueyi ;
Geng, Jinggai ;
Wang, Shuai ;
Wang, Zhenkun ;
Zhou, Aimin ;
Sun, Jianyong ;
Si, Xinhui ;
Sun, Xin ;
Zhang, Hu .
SWARM AND EVOLUTIONARY COMPUTATION, 2025, 97
[44]   A two-stage multi-objective evolutionary algorithm for large-scale multi-objective optimization [J].
Liu, Wei ;
Chen, Li ;
Hao, Xingxing ;
Xie, Fei ;
Nan, Haiyang ;
Zhai, Honghao ;
Yang, Jiyao .
2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
[45]   Expensive Multi-Objective Evolutionary Algorithm with Multi-Objective Data Generation [J].
Li J.-Y. ;
Zhan Z.-H. .
Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (05) :896-908
[46]   Inverse multi-objective combinatorial optimization [J].
Roland, Julien ;
De Smet, Yves ;
Figueira, Jose Rui .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2764-2771
[47]   A novel multi-objective evolutionary algorithm [J].
Zheng, Bojin ;
Hu, Ting .
COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 :1029-+
[48]   Evolutionary Multi-Objective Membrane Algorithm [J].
Liu, Chuang ;
Du, Yingkui ;
Li, Ao ;
Lei, Jiahao .
IEEE ACCESS, 2020, 8 :6020-6031
[49]   EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization [J].
Gaurav Dhiman ;
Krishna Kant Singh ;
Adam Slowik ;
Victor Chang ;
Ali Riza Yildiz ;
Amandeep Kaur ;
Meenakshi Garg .
International Journal of Machine Learning and Cybernetics, 2021, 12 :571-596
[50]   Evolutionary Multi-objective Diversity Optimization [J].
Anh Viet Do ;
Guo, Mingyu ;
Neumann, Aneta ;
Neumann, Frank .
PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 :117-134