Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

被引:25
作者
King, William J. [1 ]
Kouris, Nicholas A. [1 ]
Choi, Siyoung
Ogle, Brenda M. [1 ]
Murphy, William L. [1 ,2 ,3 ]
机构
[1] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Orthoped & Rehabil, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Pharmacol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Adult stem cells; Multipotency; Bioprocessing; Toxicity; Polyethyleneimine; MARROW STROMAL CELLS; LOW-MOLECULAR-WEIGHT; GENE DELIVERY; BONE-MARROW; IN-VITRO; DNA DELIVERY; TRANSIENT TRANSFECTION; PLASMID DNA; ENDOGLIN CD105; UMBILICAL-CORD;
D O I
10.1007/s00441-011-1297-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Non-viral transfection is a promising technique that could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105 and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications.
引用
收藏
页码:689 / 699
页数:11
相关论文
共 64 条
[1]   Toxicogenomics of non-viral drug delivery systems for RNAi: Potential impact on siRNA-mediated gene silencing activity and specificity [J].
Akhtar, Saghir ;
Benter, Ibrahim .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (2-3) :164-182
[2]   Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer [J].
Anwer, K. ;
Barnes, M. N. ;
Fewell, J. ;
Lewis, D. H. ;
Alvarez, R. D. .
GENE THERAPY, 2010, 17 (03) :360-369
[3]  
Audouy S, 2000, J GENE MED, V2, P465, DOI 10.1002/1521-2254(200011/12)2:6<465::AID-JGM141>3.0.CO
[4]  
2-Z
[5]   Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow [J].
Baksh, Dolores ;
Yao, Raphael ;
Tuan, Rocky S. .
STEM CELLS, 2007, 25 (06) :1384-1392
[6]   The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105) [J].
Barry, FP ;
Boynton, RE ;
Haynesworth, S ;
Murphy, JM ;
Zaia, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 265 (01) :134-139
[7]   Non-viral delivery of the gene for glial cell line-derived neurotrophic factor to mesenchymal stem cells in vitro via a collagen scaffold [J].
Bolliet, Catherine ;
Bohn, Martha C. ;
Spector, Myron .
TISSUE ENGINEERING PART C-METHODS, 2008, 14 (03) :207-219
[8]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[9]   In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery [J].
Brazeau, GA ;
Attia, S ;
Poxon, S ;
Hughes, JA .
PHARMACEUTICAL RESEARCH, 1998, 15 (05) :680-684
[10]  
Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO