Dynamical behaviors of a chaotic system with no equilibria

被引:368
作者
Wei, Zhouchao [1 ]
机构
[1] S Central Univ Nationalities, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Sprott D system; Chaotic attractors; No equilibria; Bifurcation diagram; Period-doubling cascade; EQUATIONS; ATTRACTOR; FOCI;
D O I
10.1016/j.physleta.2011.10.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on Sprott D system, a simple three-dimensional autonomous system with no equilibria is reported. The remarkable particularity of the system is that there exists a constant controller, which can adjust the type of chaotic attractors. It is demonstrated to be chaotic in the sense of having a positive largest Lyapunov exponent and fractional dimension. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcation diagram, Poincare mapping and period-doubling route to chaos are analyzed with careful numerical simulations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 18 条
  • [1] [Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
  • [2] Barnett S., 1983, Monographs and Textbooks in Pure and Applied Mathematics
  • [3] On the defined curves of some differential equations
    Bendixson, I
    [J]. ACTA MATHEMATICA, 1901, 24 (01) : 1 - 88
  • [4] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [5] Falkner VM, 1931, PHILOS MAG, V12, P865
  • [6] UNIVERSAL BEHAVIOR IN NON-LINEAR SYSTEMS
    FEIGENBAUM, MJ
    [J]. PHYSICA D, 1983, 7 (1-3): : 16 - 39
  • [7] Period doubling, Feigenbaum constant and time series prediction in an experimental chaotic RLD circuit
    Hanias, M. P.
    Avgerinos, Z.
    Tombras, G. S.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1050 - 1059
  • [8] ON THE NONEQUIVALENCE OF LORENZ SYSTEM AND CHEN SYSTEM
    Hou, Zhenting
    Kang, Ning
    Kong, Xiangxing
    Chen, Guanrong
    Yan, Guojun
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02): : 557 - 560
  • [9] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [10] 2