Lk-BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE

被引:6
作者
Aminian, M. [1 ]
Kashani, S. M. B. [1 ]
机构
[1] Tarbiat Modares Univ, Dept Pure Math, Fac Math Sci, Tehran, Iran
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 03期
关键词
L-k-operator; Biharmonic; Chen conjecture; MEAN-CURVATURE; SUBMANIFOLDS;
D O I
10.11650/tjm.19.2015.4830
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chen conjecture states that every Euclidean biharmonic submanifold is minimal. In this paper we consider the Chen conjecture for L-k-operators. The new conjecture (L-k-conjecture) is formulated as follows: If L(k)(2)x = 0 then Hk+1 = 0 where x : M-n -> Rn+1 is an isometric immersion of a Riemannian manifold M-n into the Euclidean space Rn+1, Hk+1 is the (k+1)-th mean curvature of M, and L-k is the linearized operator of the (k + 1)-th mean curvature of the Euclidean hypersurface M. We prove the L-k-conjecture for the hypersurface M with at most two principal curvatures.
引用
收藏
页码:861 / 874
页数:14
相关论文
共 24 条
[1]   Biharmonic properly immersed submanifolds in Euclidean spaces [J].
Akutagawa, Kazuo ;
Maeta, Shun .
GEOMETRIAE DEDICATA, 2013, 164 (01) :351-355
[2]   Hypersurfaces with constant mean curvature and two principal curvatures in Sn+1 [J].
Alías, LJ ;
De Almeida, SC ;
Brasil, A .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2004, 76 (03) :489-497
[3]   An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures [J].
Alias, Luis J. ;
Gurbuz, Nevin .
GEOMETRIAE DEDICATA, 2006, 121 (01) :113-127
[4]   BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS [J].
Alias, Luis J. ;
Carolina Garcia-Martinez, S. ;
Rigoli, Marco .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 263 (01) :1-12
[5]   HYPERSURFACES IN SPACE FORMS SATISFYING THE CONDITION Lkx = Ax plus b [J].
Alias, Luis J. ;
Kashani, S. M. B. .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (05) :1957-1977
[6]   Biharmonic Lorentz hypersurfaces in E14 [J].
Arvanitoyeorgos, Andreas ;
Defever, Filip ;
Kaimakamis, George ;
Papantoniou, Vassilis J. .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (02) :293-305
[7]  
Chen B.Y., 2014, SERIES PURE MATH, V27
[8]  
Chen B.-Y., 1998, KYUSHU J MATH, V52, P167
[9]  
Chen B. Y., 1991, SOOCHOW J MATH, V17, P169
[10]  
Chen B.-Y., 1991, MEMOIRS FS KYUSHU A, V45, P323