Moduli spaces of critical Riemannian metrics in dimension four

被引:55
作者
Tian, G [1 ]
Viaclovsky, J [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
orbifolds; anti-self-dual metrics;
D O I
10.1016/j.aim.2004.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a compactness result for various classes of Riemannian metrics in dimension four; in particular our method applies to anti-self-dual metrics, Kahler metrics with constant scalar curvature, and metrics with harmonic curvature. With certain geometric non-collapsing assumptions, the moduli space can be compactified by adding metrics with orbifold-like singularities. Similar results were obtained for Einstein metrics in (J. Amer. Math. Soc. 2(3) (1989) 455, Invent. Math. 97 (2) (1989) 313, Invent. Math. 101(1) (1990) 101), but our analysis differs substantially from the Einstein case in that we do not assume any pointwise Ricci curvature bound. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:346 / 372
页数:27
相关论文
共 54 条
[1]   YAMABE METRICS OF POSITIVE SCALAR CURVATURE AND CONFORMALLY FLAT MANIFOLDS [J].
AKUTAGAWA, K .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (03) :239-258
[2]  
Anderson M., 1989, J. Amer. Math. Soc., V2, P455, DOI DOI 10.2307/1990939
[3]  
ANDERSON MT, ARXIVMATHDG0312111
[4]   The geometry of weakly self-dual Kahler surfaces [J].
Apostolov, V ;
Calderbank, DMJ ;
Gauduchon, P .
COMPOSITIO MATHEMATICA, 2003, 135 (03) :279-322
[5]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[6]  
Aubin T, 1982, MONGE AMPERE EQUATIO
[7]   CORRECTION AND ADDITION - BUBBLING OUT OF EINSTEIN MANIFOLDS [J].
BANDO, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (04) :587-588
[8]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[9]   BUBBLING OUT OF EINSTEIN MANIFOLDS [J].
BANDO, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (02) :205-216
[10]   CONFORMAL GRAVITY, THE EINSTEIN EQUATIONS AND SPACES OF COMPLEX NULL GEODESICS [J].
BASTON, RJ ;
MASON, LJ .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) :815-826