Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors

被引:331
作者
Bao, Shu-Juan [1 ,2 ]
Li, Chang Ming [1 ,2 ]
Guo, Chun-Xian [1 ,2 ]
Qiao, Yan [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Ctr Adv Bionanosyst, Singapore 639798, Singapore
关键词
supercapacitor; cobalt sulfide; hydrothermal synthesis; biomolecule; nanowire;
D O I
10.1016/j.jpowsour.2008.01.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A biomolecule-assisted hydrothermal process is developed to synthesize cobalt sulfide (CoS), in which L-cysteine is used as the sulfide source and directing molecule. By controlling the synthesis conditions, CoS nanospheres and nanowires can be assembled. The as-synthesized samples are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. A specific capacitance, as high as 508 F g(-1), is achieved for CoS nanowires. This is very competitive with the best supercapacitor material, RuO2 (720-760 Fg(-1)), but its cost is remarkably lower than RuO2. Thus the nanowires are a promising material for low-cost, high-performance supercapacitors. This method could provide a universal green chemistry approach to synthesize other metal sulfides. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:676 / 681
页数:6
相关论文
共 24 条
[11]   Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods [J].
Lu, QY ;
Gao, F ;
Komarneni, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :54-55
[12]  
MAO CB, 2000, SCIENCE, V290, P1744
[13]  
Ostwald W, 1900, Z PHYS CHEM-STOCH VE, V34, P495
[14]   Materials for electrochemical capacitors - Theoretical and experimental constraints [J].
Sarangapani, S ;
Tilak, BV ;
Chen, CP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3791-3799
[15]   Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J].
Subramanian, V ;
Zhu, HW ;
Vajtai, R ;
Ajayan, PM ;
Wei, BQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (43) :20207-20214
[16]   Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage [J].
Sugimoto, W ;
Iwata, H ;
Yasunaga, Y ;
Murakami, Y ;
Takasu, Y .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (34) :4092-4096
[17]   Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors [J].
Tao, Feng ;
Zhao, Yong-Qing ;
Zhang, Guo-Qing ;
Li, Hu-Lin .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (06) :1282-1287
[18]  
Tong H, 2007, J PHYS CHEM C, V111, P3893, DOI 10.1021/jp0667011
[19]   Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries [J].
Wang, J. ;
Ng, S. H. ;
Wang, G. X. ;
Chen, J. ;
Zhao, L. ;
Chen, Y. ;
Liu, H. K. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :287-290
[20]   DNA-templated nanotube localization [J].
Xin, HJ ;
Woolley, AT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (29) :8710-8711