Co -doped graphene edge for enhanced N 2-to-NH 3 conversion

被引:49
作者
Wei, Zengxi [1 ]
Feng, Yuezhan [2 ]
Ma, Jianmin [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[2] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Henan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 48卷
基金
中国国家自然科学基金;
关键词
NITROGEN-FIXATION; AMMONIA; REDUCTION; ATOM; DINITROGEN; ELECTROCATALYST; MONOLAYER; MOLECULES; EVOLUTION; CATALYSTS;
D O I
10.1016/j.jechem.2020.02.014
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
N2 fixation in atmosphere is an important issue in modern chemistry. Designing an ideal electrochemical nitrogen reduction reaction (NRR) catalyst to overcome the sluggish reaction kinetic and ultralow selectivity is still the significant challenge. Herein, we screened the potential catalyst to accelerate N2 fixation by designing the single transition metal (TM) atoms (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Ru and Rh) supported on the edge of graphene. Our calculations revealed that the Co atom supported on the graphene edge could selectively stabilize *N2H species and destabilize *NH2 species, leading to the highest catalytic activity and selectivity for N2 fixation at the ambient conditions. In addition, the enzymatic mechanism of eNNR have the lowest overpotential of 0.72 V. This theoretical work will give a new perspective to design an available catalyst for NRR. © 2020
引用
收藏
页码:322 / 327
页数:6
相关论文
共 44 条
  • [1] NITROGEN-FIXATION IN SOLUTION
    BAZHENOVA, TA
    SHILOV, AE
    [J]. COORDINATION CHEMISTRY REVIEWS, 1995, 144 : 69 - 145
  • [2] The Evolution and Future of Earth's Nitrogen Cycle
    Canfield, Donald E.
    Glazer, Alexander N.
    Falkowski, Paul G.
    [J]. SCIENCE, 2010, 330 (6001) : 192 - 196
  • [3] B-N Pairs Enriched Defective Carbon Nanosheets for Ammonia Synthesis with High Efficiency
    Chen, Chen
    Yan, Dafeng
    Wang, Yu
    Zhou, Yangyang
    Zou, Yuqin
    Li, Yafei
    Wang, Shuangyin
    [J]. SMALL, 2019, 15 (07)
  • [4] Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline
    Choi, Changhyeok
    Back, Seoin
    Kim, Na-Young
    Lim, Juhyung
    Kim, Yong-Hyun
    Jung, Yousung
    [J]. ACS CATALYSIS, 2018, 8 (08): : 7517 - 7525
  • [5] A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions
    Cui, Xiaoyang
    Tang, Cheng
    Zhang, Qiang
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (22)
  • [6] Single atom electrocatalysts supported on graphene or graphene-like carbons
    Fei, Huilong
    Dong, Juncai
    Chen, Dongliang
    Hu, Tiandou
    Duan, Xidong
    Shakir, Imran
    Huang, Yu
    Duan, Xiangfeng
    [J]. CHEMICAL SOCIETY REVIEWS, 2019, 48 (20) : 5207 - 5241
  • [7] Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions
    Galloway, James N.
    Townsend, Alan R.
    Erisman, Jan Willem
    Bekunda, Mateete
    Cai, Zucong
    Freney, John R.
    Martinelli, Luiz A.
    Seitzinger, Sybil P.
    Sutton, Mark A.
    [J]. SCIENCE, 2008, 320 (5878) : 889 - 892
  • [8] Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat-1. h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts
    Geng, Zhigang
    Liu, Yan
    Kong, Xiangdong
    Li, Pai
    Li, Kan
    Liu, Zhongyu
    Du, Junjie
    Shu, Miao
    Si, Rui
    Zeng, Jie
    [J]. ADVANCED MATERIALS, 2018, 30 (40)
  • [9] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
  • [10] Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis
    Hu, Shaozheng
    Chen, Xin
    Li, Qiang
    Li, Fayun
    Fan, Zhiping
    Wang, Hui
    Wang, Yanjuan
    Zheng, Binghui
    Wu, Guang
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 201 : 58 - 69