Composition operators on the Schwartz space

被引:11
作者
Galbis, Antonio [1 ]
Jorda, Enrique [2 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Burjassot, Valencia, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Campus Alcoi,Plaza Ferrandiz & Carbonell S-N, Alcoy 03801, Alicante, Spain
关键词
Composition operator; composite function problem; space of rapidly decreasing functions; DIMENSIONAL SMOOTH SYMBOLS; CLOSED RANGE; DIFFERENTIABLE FUNCTIONS; SUBANALYTIC SETS;
D O I
10.4171/RMI/989
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study composition operators on the Schwartz space of rapidly decreasing functions. We prove that such a composition operator is never a compact operator and we obtain necessary or sufficient conditions for the range of the composition operator to be closed. These conditions are expressed in terms of multipliers for the Schwartz class and the closed range property of the corresponding operator considered in the space of smooth functions.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1961, Uspekhi Mat. Nauk
[2]  
[Anonymous], 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete
[3]   Composite differentiable functions [J].
Bierstone, E ;
Milman, PD ;
Pawlucki, W .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) :607-620
[4]   Geometric and differential properties of subanalytic sets [J].
Bierstone, E ;
Milman, PD .
ANNALS OF MATHEMATICS, 1998, 147 (03) :731-785
[5]   GEOMETRIC AND DIFFERENTIAL PROPERTIES OF SUBANALYTIC SETS [J].
BIERSTONE, E ;
MILMAN, PD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (02) :385-393
[6]   The division problem for tempered distributions of one variable [J].
Bonet, Jose ;
Frerick, Leonhard ;
Jorda, Enrique .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) :2349-2358
[7]  
Cowen CC, 1995, STUDIES ADV MATH
[8]   Superposition in classes of ultradifferentiable functions [J].
Fernandez, Carmen ;
Galbis, Antonio .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2006, 42 (02) :399-419
[9]   FONCTIONS COMPOSEES DIFFERENTIABLES [J].
GLAESER, G .
ANNALS OF MATHEMATICS, 1963, 77 (01) :193-&
[10]   Composition operators with closed range for smooth injective symbols R → Rd [J].
Kenessey, Nicolas ;
Wengenroth, Jochen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (10) :2997-3006