Continuous-variable quantum optical experiments in the time domain using squeezed states and heralded non-Gaussian states

被引:0
|
作者
Yoshikaw, Jun-ichi [1 ,2 ]
Hashimoto, Yosuke [1 ]
Ogawa, Hisashi [1 ]
Yokoyama, Shota [3 ]
Shiozawa, Yu [1 ]
Serikawa, Takahiro [1 ]
Furusawa, Akira [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Univ Tokyo, Quantum Phase Elect Ctr, Sch Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[3] Univ New South Wales, Sch Engn & Informat Technol, Ctr Quantum Computat & Commun Technol, Canberra, ACT 2600, Australia
来源
ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION X | 2017年 / 10118卷
关键词
quantum optics; continuous variables; quantum entanglement; squeezed states; single-photon states; optical homodyne detection; optical parametric oscillator; TELEPORTATION; LIGHT;
D O I
10.1117/12.2252206
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Continuous-variable quantum information processing with optical field quadrature amplitudes is advantageous in deterministic creation of Gaussian entanglement. On the other hand, non-Gaussian state preparation and operation are currently limited, but heralding schemes potentially overcome this difficulty. Here, we summarize our recent progress in continuous-variable quantum optical experiments. In particular, we have recently succeeded in creation of ultra-large-scale cluster-type entanglement with full inseparability, multiplexed in the time domain; storage and on-demand release of heralded single-photon states, which is applied to synchronization of two heralded single-photon states; real-time quadrature measurements regarding non-Gaussian single-photon states with exponentially rising wavepackets; squeezing with relatively broader bandwidth by using triangle optical parametric oscillator.
引用
收藏
页数:11
相关论文
共 47 条
  • [1] Quantum key distribution using continuous-variable non-Gaussian states
    L. F. M. Borelli
    L. S. Aguiar
    J. A. Roversi
    A. Vidiella-Barranco
    Quantum Information Processing, 2016, 15 : 893 - 904
  • [2] Quantum key distribution using continuous-variable non-Gaussian states
    Borelli, L. F. M.
    Aguiar, L. S.
    Roversi, J. A.
    Vidiella-Barranco, A.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 893 - 904
  • [3] Performance analysis of continuous-variable quantum key distribution using non-Gaussian states
    L. S. Aguiar
    L. F. M. Borelli
    J. A. Roversi
    A. Vidiella-Barranco
    Quantum Information Processing, 21
  • [4] Performance analysis of continuous-variable quantum key distribution using non-Gaussian states
    Aguiar, L. S.
    Borelli, L. F. M.
    Roversi, J. A.
    Vidiella-Barranco, A.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [5] Continuous-variable quantum teleportation of squeezed coherent states
    Fiurásek, J
    FIRST INTERNATIONAL WORKSHOP ON CLASSICAL AND QUANTUM INTERFERENCE, 2002, 4888 : 9 - 15
  • [6] Continuous-variable quantum information processing with squeezed states of light
    Yonezawa, H.
    Furusawa, A.
    OPTICS AND SPECTROSCOPY, 2010, 108 (02) : 288 - 296
  • [7] Non-gaussian continuous-variable teleportation
    Marian, Paulina
    Marian, Tudor A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 721 - 726
  • [8] Tunable non-Gaussian resources for continuous-variable quantum technologies
    Dell'Anno, F.
    Buono, D.
    Nocerino, G.
    Porzio, A.
    Solimeno, S.
    De Siena, S.
    Illuminati, F.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [9] Photonic families of non-Gaussian entangled states and entanglement criteria for continuous-variable systems
    Namiki, Ryo
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [10] Quantum memory for entangled continuous-variable states
    Jensen, K.
    Wasilewski, W.
    Krauter, H.
    Fernholz, T.
    Nielsen, B. M.
    Owari, M.
    Plenio, M. B.
    Serafini, A.
    Wolf, M. M.
    Polzik, E. S.
    NATURE PHYSICS, 2011, 7 (01) : 13 - 16