Double-graded supersymmetric quantum mechanics

被引:35
作者
Bruce, Andrew James [1 ]
Duplij, Steven [2 ]
机构
[1] Univ Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Univ Munster, Ctr Informat Proc ZIV, D-48149 Munster, Germany
关键词
PARTICLES;
D O I
10.1063/1.5118302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum mechanical model that realizes the Z2xZ2-graded generalization of the one-dimensional supertranslation algebra is proposed. This model shares some features with the well-known Witten model and is related to parasupersymmetric quantum mechanics, though the model is not directly equivalent to either of these. The purpose of this paper is to show that novel "higher gradings" are possible in the context of non-relativistic quantum mechanics.
引用
收藏
页数:13
相关论文
共 57 条
[1]   Z2 x Z2-graded Lie symmetries of the Levy-Leblond equations [J].
Aizawa, N. ;
Kuznetsova, Z. ;
Tanaka, H. ;
Toppan, F. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (12)
[2]   Extended supersymmetric quantum mechanics [J].
Akulov, V ;
Kudinov, M .
PHYSICS LETTERS B, 1999, 460 (3-4) :365-370
[3]   QUANTUM SUPERCONFORMAL MODEL IN (1,2) SPACE [J].
AKULOV, VP ;
PASHNEV, AI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1983, 56 (03) :862-866
[4]   On the super-conformal quantum mechanics in the nonlinear realizations approach [J].
Akulov, VP ;
Cebecioglu, O ;
Pashnev, A .
PHYSICS LETTERS B, 2003, 562 (1-2) :132-140
[5]  
Akulov VP, 1999, LECT NOTES PHYS, V524, P235
[6]  
[Anonymous], 1971, Pisma Zh. Eksp. Teor. Fiz. 13
[7]  
Arfken G. B., 2005, MATH METHODS PHYS
[8]  
Bagchi B. K., 2001, MONOGRAPHS SURVEYS P, V116, pxiv+222
[9]   VOLICHENKO ALGEBRAS AND NONHOMOGENEOUS SUBALGEBRAS OF LIE-SUPERALGEBRAS [J].
BARANOV, AA .
SIBERIAN MATHEMATICAL JOURNAL, 1995, 36 (05) :859-868
[10]   ON PARASUPERSYMMETRY AND REMARKABLE LIE STRUCTURES [J].
BECKERS, J ;
DEBERGH, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (14) :L751-L755