Finite-size scaling of critical avalanches

被引:1
|
作者
Yadav, Avinash Chand [1 ]
Quadir, Abdul [2 ]
Jafri, Haider Hasan [2 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, India
[2] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India
关键词
SELF-ORGANIZED CRITICALITY; CRITICAL EXPONENTS; POWER LAWS; SANDPILE; UNIVERSALITY; MODEL; PILE;
D O I
10.1103/PhysRevE.106.014148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1, which differs significantly from the previous estimate of 1.11.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Finite-size corrections of the entanglement entropy of critical quantum chains
    Xavier, J. C.
    Alcaraz, F. C.
    PHYSICAL REVIEW B, 2012, 85 (02)
  • [42] Finite-Size Scaling Approach for Critical Wetting: Rationalization in Terms of a Bulk Transition with an Order Parameter Exponent Equal to Zero
    Albano, Ezequiel V.
    Binder, Kurt
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [43] Nonstandard scaling law of fluctuations in finite-size systems of globally coupled oscillators
    Nishikawa, Isao
    Tanaka, Gouhei
    Aihara, Kazuyuki
    PHYSICAL REVIEW E, 2013, 88 (02)
  • [44] The square lattice Ising model on the rectangle II: finite-size scaling limit
    Hucht, Alfred
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (26)
  • [45] Finite-size scaling of Landau-Ginzburg model for fractal time processes
    Zeng, Shaolong
    Hu, Yangfan
    Tan, Shijing
    Wang, Biao
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [46] Anomalous finite-size scaling in higher-order processes with absorbing states
    Vezzani, Alessandro
    Munoz, Miguel A.
    Burioni, Raffaella
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [47] Finite-size scaling in globally coupled phase oscillators with a general coupling scheme
    Nishikawa, Isao
    Iwayama, Koji
    Tanaka, Gouhei
    Horita, Takehiko
    Aihara, Kazuyuki
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (02):
  • [48] Avalanches on a conical bead pile: scaling with tuning parameters
    Lehman, S. Y.
    Baker, Elizabeth
    Henry, Howard A.
    Kindschuh, Andrew J.
    Markley, Larry C.
    Browning, Megan B.
    Mills, Mary E.
    Winters, R. Michael
    Jacobs, D. T.
    GRANULAR MATTER, 2012, 14 (05) : 553 - 561
  • [49] Finite-size scaling analysis of isotropic-polar phase transitions in an amphiphilic fluid
    Melle, Michael
    Giura, Stefano
    Schlotthauer, Sergej
    Schoen, Martin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (03)
  • [50] Finite-size scaling study of shear viscosity anomaly at liquid-liquid criticality
    Roy, Sutapa
    Das, Subir K.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (23)