Finite-size scaling of critical avalanches

被引:1
|
作者
Yadav, Avinash Chand [1 ]
Quadir, Abdul [2 ]
Jafri, Haider Hasan [2 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, India
[2] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India
关键词
SELF-ORGANIZED CRITICALITY; CRITICAL EXPONENTS; POWER LAWS; SANDPILE; UNIVERSALITY; MODEL; PILE;
D O I
10.1103/PhysRevE.106.014148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1, which differs significantly from the previous estimate of 1.11.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Finite-size scaling in anisotropic systems
    Tonchev, N. S.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [42] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [43] Disorder averaging and finite-size scaling
    Bernardet, K
    Pázmándi, F
    Batrouni, GG
    PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4477 - 4480
  • [44] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667
  • [45] Finite-size scaling of the quasispecies model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B):
  • [46] ORDER PARAMETER AND FINITE-SIZE SCALING
    TAKANO, H
    SAITO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1369 - 1376
  • [47] Finite-size scaling of meson propagators
    Damgaard, PH
    Diamantini, MC
    Hernández, P
    Jansen, K
    NUCLEAR PHYSICS B, 2002, 629 (1-3) : 445 - 478
  • [48] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026129
  • [49] Finite-Size Scaling at the Jamming Transition
    Goodrich, Carl P.
    Liu, Andrea J.
    Nagel, Sidney R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [50] Finite-size scaling of kinetic quantities
    Tarasenko, AA
    Nieto, F
    Uebing, C
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (15) : 3437 - 3440