Finite-size scaling of critical avalanches

被引:1
|
作者
Yadav, Avinash Chand [1 ]
Quadir, Abdul [2 ]
Jafri, Haider Hasan [2 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, India
[2] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India
关键词
SELF-ORGANIZED CRITICALITY; CRITICAL EXPONENTS; POWER LAWS; SANDPILE; UNIVERSALITY; MODEL; PILE;
D O I
10.1103/PhysRevE.106.014148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1, which differs significantly from the previous estimate of 1.11.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Finite-size scaling of O(n) systems at the upper critical dimensionality
    Jian-Ping Lv
    Wanwan Xu
    Yanan Sun
    Kun Chen
    Youjin Deng
    NationalScienceReview, 2021, 8 (03) : 53 - 61
  • [32] Failure of universal finite-size scaling above the upper critical dimension
    Chen, XS
    Dohm, V
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 251 (3-4) : 439 - 451
  • [33] Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena
    Ardourel, Vincent
    Bangu, Sorin
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2023, 100 : 99 - 106
  • [34] Finite-size scaling of O(n) systems at the upper critical dimensionality
    Lv, Jian-Ping
    Xu, Wanwan
    Sun, Yanan
    Chen, Kun
    Deng, Youjin
    NATIONAL SCIENCE REVIEW, 2021, 8 (03)
  • [35] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [36] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [37] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [38] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [39] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [40] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683