Finite-size scaling of critical avalanches

被引:1
|
作者
Yadav, Avinash Chand [1 ]
Quadir, Abdul [2 ]
Jafri, Haider Hasan [2 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, India
[2] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India
关键词
SELF-ORGANIZED CRITICALITY; CRITICAL EXPONENTS; POWER LAWS; SANDPILE; UNIVERSALITY; MODEL; PILE;
D O I
10.1103/PhysRevE.106.014148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1, which differs significantly from the previous estimate of 1.11.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Finite-size corrections and scaling for the dimer model on the checkerboard lattice
    Izmailian, Nickolay Sh.
    Wu, Ming-Chya
    Hu, Chin-Kun
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [22] Corrections to finite-size scaling in the φ4 model on square lattices
    Kaupuzs, J.
    Melnik, R. V. N.
    Rimsans, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [23] When correlations exceed system size: finite-size scaling in free boundary conditions above the upper critical dimension
    Honchar, Yu.
    Berche, B.
    Holovatch, Yu.
    Kenna, R.
    CONDENSED MATTER PHYSICS, 2024, 27 (01)
  • [24] Non-universal finite-size scaling of rough surfaces
    Mandal, Pradipta Kumar
    Jana, Debnarayan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [25] Cluster analysis of the Ising model and universal finite-size scaling
    Okabe, Y
    Kaneda, K
    Tomita, Y
    Kikuchi, M
    Hu, CK
    PHYSICA A, 2000, 281 (1-4): : 233 - 241
  • [26] Finite-size scaling of quasi-stationary-state temperature
    Rodriguez, Antonio
    Nobre, Fernando D.
    Tsallis, Constantino
    PHYSICAL REVIEW E, 2022, 105 (04)
  • [27] Finite-size excess-entropy scaling for simple liquids
    Sevilla, Mauricio
    Banerjee, Atreyee
    Cortes-Huerto, Robinson
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (20)
  • [28] Renormalized Gaussian approach to critical fluctuations in the Landau-Ginzburg-Wilson model and finite-size scaling
    Tsiaze, R. M. Keumo
    Tchouobiap, S. E. Mkam
    Danga, J. E.
    Domngang, S.
    Hounkonnou, M. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [29] Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
    Flores-Sola, Emilio J.
    Berche, Bertrand
    Kenna, Ralph
    Weigel, Martin
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (01) : 1 - 8
  • [30] Universal finite-size scaling for percolation theory in high dimensions
    Kenna, Ralph
    Berche, Bertrand
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (23)