Finite-size scaling of critical avalanches

被引:1
|
作者
Yadav, Avinash Chand [1 ]
Quadir, Abdul [2 ]
Jafri, Haider Hasan [2 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, India
[2] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, India
关键词
SELF-ORGANIZED CRITICALITY; CRITICAL EXPONENTS; POWER LAWS; SANDPILE; UNIVERSALITY; MODEL; PILE;
D O I
10.1103/PhysRevE.106.014148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1, which differs significantly from the previous estimate of 1.11.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] FINITE-SIZE SCALING FOR CRITICAL FILMS
    KRECH, M
    DIETRICH, S
    PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 345 - 348
  • [2] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [3] Finite-size scaling and critical exponents in critical relaxation
    Li, ZB
    Schulke, L
    Zheng, B
    PHYSICAL REVIEW E, 1996, 53 (03): : 2940 - 2948
  • [4] UNIVERSAL CRITICAL AMPLITUDES IN FINITE-SIZE SCALING
    PRIVMAN, V
    FISHER, ME
    PHYSICAL REVIEW B, 1984, 30 (01): : 322 - 327
  • [5] Scaling and finite-size effects for the critical backbone
    Barthelemy, M
    Buldyrev, SV
    Havlin, S
    Stanley, HE
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 : 19 - 27
  • [6] ON THE FINITE-SIZE SCALING IN QUANTUM CRITICAL PHENOMENA
    TONCHEV, NS
    PHYSICA A, 1991, 171 (02): : 374 - 383
  • [7] Critical Phenomena and Finite-size Scaling in Communication Networks
    Sarkar, Soumik
    Mukherjee, Kushal
    Srivastav, Abhishek
    Ray, Asok
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 271 - 276
  • [8] CRITICAL EXPONENT OF PERCOLATION CONDUCTIVITY BY FINITE-SIZE SCALING
    SAHIMI, M
    HUGHES, BD
    SCRIVEN, LE
    DAVIS, HT
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (16): : L521 - L527
  • [9] Finite-size scaling of the Glauber model of critical dynamics
    Luscombe, JH
    Luban, M
    Reynolds, JP
    PHYSICAL REVIEW E, 1996, 53 (06): : 5852 - 5860
  • [10] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):