Channel Code Using Constrained-Random-Number Generator Revisited

被引:7
作者
Muramatsu, Jun [1 ]
Miyake, Shigeki [2 ]
机构
[1] NTT Corp, NTT Commun Sci Labs, Kyoto 6190237, Japan
[2] NTT Corp, NTT Network Innovat Labs, Atsugi, Kanagawa 2390847, Japan
关键词
Shannon theory; channel coding; source code with decoder side information; constrained-random-number generator; COMPRESSION; WOLF; CAPACITY; THEOREMS; MATRICES; PROOF;
D O I
10.1109/TIT.2018.2878217
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A construction of a channel code by using a source code with decoder side information is introduced. The encoder and decoder pair of any source code can be used for the construction. Constrained-random-number generators, which generate random numbers satisfying a condition specified by a function and its value, are used to construct stochastic encoders and decoders. The result suggests that we can divide the channel coding problem into the problems of channel encoding and source decoding with side information.
引用
收藏
页码:500 / 510
页数:11
相关论文
共 46 条
[11]   PROOF OF DATA COMPRESSION THEOREM OF SLEPIAN AND WOLF FOR ERGODIC SOURCES [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (02) :226-228
[13]  
Csiszar I., 2011, INFORM THEORY CODING
[14]   The ML decoding performance of LDPC ensembles over Zq [J].
Erez, U ;
Miller, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (05) :1871-1879
[15]  
Gallager R., 1968, INFORM THEORY RELIAB, V2
[16]  
Gallager R. G, 1963, LOW DENSITY PARITY C
[17]   Compression of correlated binary sources using turbo codes [J].
Garcia-Frias, J ;
Zhao, Y .
IEEE COMMUNICATIONS LETTERS, 2001, 5 (10) :417-419
[18]  
Han T.-S., 2003, INFORM SPECTRUM METH
[19]  
HAN TS, 1993, IEEE T INFORM THEORY, V39, P752, DOI 10.1109/18.256486
[20]   Polar Coding Without Alphabet Extension for Asymmetric Models [J].
Honda, Junya ;
Yamamoto, Hirosuke .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (12) :7829-7838