Facilitating Tip-Enhanced Raman Scattering on Dielectric Substrates via Electrical Cutting of Silver Nanowire Probes

被引:7
作者
Walke, Peter [1 ]
Toyouchi, Shuichi [1 ]
Wolf, Mathias [1 ]
Peeters, Wannes [1 ]
Prabhu, Sugosh R. [1 ]
Inose, Tomoko [3 ]
De Feyter, Steven [1 ]
Fujita, Yasuhiko [1 ,2 ]
Uji-i, Hiroshi [1 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Chem, Div Mol Imaging & Photon, Celestijnenlaan 200F, B-3001 Leuven, Belgium
[2] Toray Res Ctr Ltd, Sonoyama 3-3-7, Otsu, Shiga 5208567, Japan
[3] Hokkaido Univ, RIES, N20W10, Sapporo, Hokkaido, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2018年 / 9卷 / 24期
基金
欧洲研究理事会;
关键词
SINGLE-MOLECULE; SPECTROSCOPY;
D O I
10.1021/acs.jpclett.8b03189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TERS is a powerful tool for nanoscale optical characterization of surfaces. However, even after 20 years of development, the parameters for optimal TERS tips are still up for debate. As a result, routine measurements on bulk or dielectric substrates remain exceptionally challenging. Herein we help to alleviate this by using electrical cutting to strategically modify silver nanowire TERS probes. Following cutting, the tips present a large, spherical apex and are often nanostructured with numerous nanoparticles, which we argue improve light collection and optical coupling. This doubles TERS signals on a highly enhancing, gap-mode substrate compared to our standard nanowire tips while maintaining a high reproducibility and resolution. More interestingly, on a dielectric substrate (graphene on SiO2) the tips give similar to 7x higher signals than our standard tips. Further investigations point to the nonlocal nature of the enhancement using standard, smooth TERS probes without gap-mode, making such nanostructuring highly beneficial in these cases.
引用
收藏
页码:7117 / 7122
页数:11
相关论文
共 32 条
  • [1] Aizpurua J, 2017, FARADAY DISCUSS, V205, P291, DOI [10.1039/C7FD90088K, 10.1039/c7fd90088k]
  • [2] Plasmon-Assisted Indirect Light Absorption Engineering in Small Transition Metal Catalyst Nanoparticles
    Antosiewicz, Tomasz J.
    Wadell, Carl
    Langhammer, Christoph
    [J]. ADVANCED OPTICAL MATERIALS, 2015, 3 (11): : 1591 - 1599
  • [3] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
  • [4] Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method
    Bailo, Elena
    Deckert, Volker
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) : 1658 - 1661
  • [5] Spatial Coherence in Near-Field Raman Scattering
    Beams, Ryan
    Cancado, Luiz Gustavo
    Oh, Sang-Hyun
    Jorio, Ado
    Novotny, Lukas
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (18)
  • [6] Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy
    Berweger, Samuel
    Atkin, Joanna M.
    Olmon, Robert L.
    Raschke, Markus B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24): : 3427 - 3432
  • [7] Chen C, 2014, NAT COMMUN, V5, DOI [10.1038/ncomms4312, 10.1038/ncomms4357]
  • [8] Raman spectroscopy as a versatile tool for studying the properties of graphene
    Ferrari, Andrea C.
    Basko, Denis M.
    [J]. NATURE NANOTECHNOLOGY, 2013, 8 (04) : 235 - 246
  • [9] Surface Plasmon-Assisted Site-Specific Cutting of Silver Nanowires Using Femtosecond Laser
    Fujita, Yasuhiko
    Walke, Peter
    Lu, Gang
    Chamtouri, Maha
    De Feyter, Steven
    Uji-i, Hiroshi
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2016, 1 (02):
  • [10] Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire
    Fujita, Yasuhiko
    Walke, Peter
    De Feyter, Steven
    Uji-i, Hiroshi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (08)