Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries

被引:451
作者
Jokar, Ali [1 ]
Rajabloo, Barzin [1 ]
Desilets, Martin [1 ]
Lacroix, Marcel [2 ]
机构
[1] Univ Sherbrooke, Dept Chem & Biotechnol Engn, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Dept Mech Engn, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Review; Li-ion battery; P2D model; Simplified model; Battery management system; SINGLE-PARTICLE MODEL; ELECTROCHEMICAL MODEL; LITHIUM/POLYMER BATTERY; EQUIVALENT-CIRCUIT; DISCHARGE; CHARGE; REFORMULATION; SIMULATION; DESIGN; CELLS;
D O I
10.1016/j.jpowsour.2016.07.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Over the last decade, many efforts have been deployed to develop models for the prediction, the control, the optimization and the parameter estimation of Lithium-ion (Li-ion) batteries. It appears that the most successful electrochemical-based model for Li-ion battery is the Pseudo-two-Dimensional model (P2D). Due to the fact that the governing equations are complex, this model cannot be used in real-time applications like Battery Management Systems (BMS5). To remedy the situation, several investigations have been carried out to simplify the P2D model. Mathematical and physical techniques are employed to reduce the order of magnitude of the P2D governing equations. The present paper is a review of the studies on the modeling of Li-ion batteries with simplified P2D models. The assumptions on which these models rest are stated, the calculation methods are examined, the advantages and the drawbacks of the models are discussed and their applications are presented. Suggestions for overcoming the shortcomings of the models are made. Challenges and future directions in the modeling of Li-ion batteries are also discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 81 条
[1]   Thermal modeling and design considerations of lithium-ion batteries [J].
Al Hallaj, S ;
Maleki, H ;
Hong, JS ;
Selman, JR .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :1-8
[2]  
Andersson A. S., 2000, SOLID STATE LETT, V3.2, P66
[3]  
[Anonymous], 2002, HDB BATTERIES
[4]  
[Anonymous], THESIS
[5]  
[Anonymous], 2010, Battery Management Systems for Large Lithium Ion Battery Packs
[6]   DYNAMIC ASPECTS OF SOLID-SOLUTION CATHODES FOR ELECTROCHEMICAL POWER SOURCES [J].
ATLUNG, S ;
WEST, K ;
JACOBSEN, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (08) :1311-1321
[7]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[8]  
Beeney M. D., 2013, THESIS
[9]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[10]   Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter [J].
Bizeray, A. M. ;
Zhao, S. ;
Duncan, S. R. ;
Howey, D. A. .
JOURNAL OF POWER SOURCES, 2015, 296 :400-412