Potassium Fluoride and Carbonate Lead to Cell Failure in Potassium-Ion Batteries

被引:34
作者
Ells, Andrew W. [1 ]
May, Richard [1 ]
Marbella, Lauren E. [1 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
potassium-ion batteries; solid electrolyte interphase; electrolyte engineering; beyond Li-ion; fluoroethylene carbonate; electrolyte additives; NMR; SOLID-ELECTROLYTE INTERPHASE; FLUOROETHYLENE CARBONATE; K-ION; LITHIUM-FLUORIDE; NMR-SPECTROSCOPY; SEI COMPOUNDS; SODIUM-ION; GRAPHITE; PERFORMANCE; ENERGY;
D O I
10.1021/acsami.1c15174
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While Li-ion is the prevailing commercial battery chemistry, the development of batteries that use earth-abundant alkali metals (e.g., Na and K) alleviates reliance on Li with potentially cheaper technologies. Electrolyte engineering has been a major thrust of Li-ion battery (LIB) research, and it is unclear if the same electrolyte design principles apply to K-ion batteries (KIBs). Fluoroethylene carbonate (FEC) is a well-known additive used in Li-ion electrolytes because the products of its sacrificial decomposition aid in forming a stable solid electrolyte interphase (SEI) on the anode surface. Here, we show that FEC addition to KIBs containing hard carbon anodes results in a dramatic decrease in capacity and cell failure in only two cycles, whereas capacity retention remains high (> 90% over 100 cycles at C/10 for both KPF6 and KFSI) for electrolytes that do not contain FEC. Using a combination of F-19 solid-state nuclear magnetic resonance (SSNMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS), we show that FEC decomposes during galvanostatic cycling to form insoluble KF and K2CO3 on the anode surface, which correlates with increased interfacial resistance in the cell. Our results strongly suggest that KIB performance is sensitive to the accumulation of an inorganic SEI, likely due to poor K transport in these compounds. This mechanism of FEC decomposition was confirmed in two separate electrolyte formulations using KPF6 or KFSI. Interestingly, the salt anions do not decompose themselves, unlike their Li analogues. Insight from these results indicates that electrolyte decomposition pathways and favorable SEI components are significantly different in KIBs and LIBs, suggesting that entirely new approaches to KIB electrolyte engineering are needed.
引用
收藏
页码:53841 / 53849
页数:9
相关论文
共 62 条
[1]   Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries [J].
Adams, Ryan A. ;
Varma, Arvind ;
Pol, Vilas G. .
JOURNAL OF POWER SOURCES, 2019, 410 :124-131
[2]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[3]   IMPEDANCE SPECTROSCOPY OF LITHIUM ELECTRODES .2. THE BEHAVIOR IN PROPYLENE CARBONATE SOLUTIONS - THE SIGNIFICANCE OF THE DATA OBTAINED [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 367 (1-2) :15-25
[4]   A novel K-ion battery: hexacyanoferrate(II)/graphite cell [J].
Bie, Xiaofei ;
Kubota, Kei ;
Hosaka, Tomooki ;
Chihara, Kuniko ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) :4325-4330
[5]   The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes [J].
Chen, Xiang ;
Li, Hao-Ran ;
Shen, Xin ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (51) :16643-16647
[6]   Short-Range Order and Unusual Modes of Nickel Redox in a Fluorine-Substituted Disordered Rocksalt Oxide Lithium-Ion Cathode [J].
Clement, Raphaele J. ;
Kitchaev, Daniil ;
Lee, Jinhyuk ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2018, 30 (19) :6945-6956
[7]   Combined economic and technological evaluation of battery energy storage for grid applications [J].
Davies, D. M. ;
Verde, M. G. ;
Mnyshenko, O. ;
Chen, Y. R. ;
Rajeev, R. ;
Meng, Y. S. ;
Elliott, G. .
NATURE ENERGY, 2019, 4 (01) :42-50
[8]   Outlook on K-Ion Batteries [J].
Dhir, Shobhan ;
Wheeler, Samuel ;
Capone, Isaac ;
Pasta, Mauro .
CHEM, 2020, 6 (10) :2442-2460
[9]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[10]   Potassium Secondary Batteries [J].
Eftekhari, Ali ;
Jian, Zelang ;
Ji, Xiulei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) :4404-4419