The linear rational collocation method

被引:28
作者
Baltensperger, R [1 ]
Berrut, JP [1 ]
机构
[1] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
关键词
linear rational interpolation; time evolution partial differential equations; spectral method; conformal point shifts;
D O I
10.1016/S0377-0427(00)00552-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the collocation method based on linear rational interpolation for solving general hyperbolic problems, prove its stability and its convergence in weighted norms and give numerical examples for its use. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:243 / 258
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1989, CHEBYSHEV FOURIER SP
[2]   Exponential convergence of a linear rational interpolant between transformed Chebyshev points [J].
Baltensperger, R ;
Berrut, JP ;
Noël, B .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1109-1120
[3]  
Baltensperger R, 1999, COMPUT MATH APPL, V38, P119
[4]  
BALTENSPERGER R, 1999, THESIS U FRIBOURG SW
[5]   Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval [J].
Berrut, JP ;
Mittelmann, HD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (06) :77-86
[6]   RATIONAL FUNCTIONS FOR GUARANTEED AND EXPERIMENTALLY WELL-CONDITIONED GLOBAL INTERPOLATION [J].
BERRUT, JP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (01) :1-16
[7]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[8]   ERROR-ESTIMATES FOR SPECTRAL AND PSEUDOSPECTRAL APPROXIMATIONS OF HYPERBOLIC-EQUATIONS [J].
CANUTO, C ;
QUARTERONI, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (03) :629-642
[9]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[10]  
Hairer E., 1991, SOLVING ORDINARY DIF