An Integrative Framework of Human Hand Gesture Segmentation for Human-Robot Interaction

被引:40
作者
Ju, Zhaojie [1 ]
Ji, Xiaofei [2 ]
Li, Jing [3 ,4 ]
Liu, Honghai [1 ]
机构
[1] Univ Portsmouth, Sch Comp, Portsmouth PO1 2UP, Hants, England
[2] Shenyang Aerosp Univ, Sch Automat, Shenyang 110136, Liaoning, Peoples R China
[3] Nanchang Univ, Sch Informat Engn, Nanchang 330047, Jiangxi, Peoples R China
[4] Nanchang Univ, Jiangxi Prov Key Lab Intelligent Informat Syst, Nanchang 330047, Jiangxi, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2017年 / 11卷 / 03期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Alignment; hand gesture segmentation; human-computer interaction (HCI); RGB-depth (RGB-D); CAMERA CALIBRATION; KINECT SENSOR; RECOGNITION; DEPTH;
D O I
10.1109/JSYST.2015.2468231
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel framework to segment hand gestures in RGB-depth (RGB-D) images captured by Kinect using humanlike approaches for human-robot interaction. The goal is to reduce the error of Kinect sensing and, consequently, to improve the precision of hand gesture segmentation for robot NAO. The proposed framework consists of two main novel approaches. First, the depth map and RGB image are aligned by using the genetic algorithm to estimate key points, and the alignment is robust to uncertainties of the extracted point numbers. Then, a novel approach is proposed to refine the edge of the tracked hand gestures in RGB images by applying a modified expectation-maximization (EM) algorithm based on Bayesian networks. The experimental results demonstrate that the proposed alignment method is capable of precisely matching the depth maps with RGB images, and the EM algorithm further effectively adjusts the RGB edges of the segmented hand gestures. The proposed framework has been integrated and validated in a system of human-robot interaction to improve NAO robot's performance of understanding and interpretation.
引用
收藏
页码:1326 / 1336
页数:11
相关论文
共 50 条
  • [41] Realtime Hand Gesture Recognition System for Human Computer Interaction
    Rajkarne, Piyush
    Saraf, Niraj
    Maheshwari, Raghav
    Sarile, Sanket
    Tirpude, S. C.
    Naidu, D.
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 263 - 270
  • [42] Fusion of Gesture and Speech for Increased Accuracy in Human Robot Interaction
    Baranwal, Neha
    Singh, Avinash Kumar
    Hellstrom, Thomas
    2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2019, : 139 - 144
  • [43] Human Motion Understanding for Selecting Action Timing in Collaborative Human-Robot Interaction
    Rea, Francesco
    Vignolo, Alessia
    Sciutti, Alessandra
    Noceti, Nicoletta
    FRONTIERS IN ROBOTICS AND AI, 2019, 6
  • [44] Human modeling for human-robot collaboration
    Hiatt, Laura M.
    Narber, Cody
    Bekele, Esube
    Khemlani, Sangeet S.
    Trafton, J. Gregory
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (5-7) : 580 - 596
  • [45] Flexible Assimilation of Human's Target for Versatile Human-Robot Physical Interaction
    Takagi, Atsushi
    Li, Yanan
    Burdet, Etienne
    IEEE TRANSACTIONS ON HAPTICS, 2021, 14 (02) : 421 - 431
  • [46] Ghost-in-the-Machine reveals human social signals for human-robot interaction
    Loth, Sebastian
    Jettka, Katharina
    Giuliani, Manuel
    de Ruiter, Jan P.
    FRONTIERS IN PSYCHOLOGY, 2015, 6
  • [47] Understanding nonverbal communication cues of human personality traits in human-robot interaction
    Shen, Zhihao
    Elibol, Armagan
    Chong, Nak Young
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (06) : 1465 - 1477
  • [48] A Social Robot Architecture for Personalized Real-Time Human-Robot Interaction
    Foggia, Pasquale
    Greco, Antonio
    Roberto, Antonio
    Saggese, Alessia
    Vento, Mario
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24): : 22427 - 22439
  • [49] Assessing Emotions in Human-Robot Interaction Based on the Appraisal Theory
    Demutti, Marco
    D'Amato, Vincenzo
    Recchiuto, Carmine
    Oneto, Luca
    Sgorbissa, Antonio
    2022 31ST IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (IEEE RO-MAN 2022), 2022, : 1435 - 1442
  • [50] Augmented Robotics Dialog System for Enhancing Human-Robot Interaction
    Alonso-Martin, Fernando
    Castro-Gonzalez, Alvaro
    de Gorostiza Luengo, Francisco Javier Fernandez
    Angel Salichs, Miguel
    SENSORS, 2015, 15 (07): : 15799 - 15829