Physicochemical and electrochemical behaviours of manganese oxide electrodes for supercapacitor application

被引:13
作者
Devi, Nitika [1 ,2 ]
Goswami, Manoj [1 ,5 ]
Saraf, Mohit [4 ]
Singh, Bhupendra [1 ]
Mobin, Shaikh M. [3 ,4 ]
Singh, Rajesh Kumar [2 ]
Srivastava, A. K. [1 ,5 ]
Kumar, Surender [1 ,5 ]
机构
[1] CSIR Adv Mat & Proc Res Inst, Bhopal 462026, India
[2] Cent Univ Himachal Pradesh, Dept Phys, Dharamshala 176215, India
[3] Indian Inst Technol Indore, Discipline Chem, Khandwa Rd, Indore 453552, India
[4] Indian Inst Technol Indore, Discipline Met Engn & Mat Sci, Khandwa Rd, Indore 453552, India
[5] CSIR Adv Mat & Proc Res Inst, Acad Sci & Innovat Res AcSIR, CSIR AMPRI Campus, Bhopal 462026, India
关键词
As-prepared; MnO2; Physicochemical; Supercapacitor; Reducing agent; REDUCED GRAPHENE OXIDE; AMORPHOUS MNO2; FACILE SYNTHESIS; ENERGY-STORAGE; PERFORMANCE; NANOSTRUCTURES; CAPACITANCE; TECHNOLOGIES; FABRICATION; KMNO4;
D O I
10.1016/j.est.2020.101228
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Objectives of this study are to probe the effect of reducing agents on physicochemical and electrochemical properties of manganese oxide. Manganese oxide is synthesized by chemical reduction of KMnO4 at room temperature using ethylene glycol, hydrazine hydrate, Na2S2O3, potassium iodide, formic acid, citric acid, and NaBH4. All as-prepared manganese oxide samples are analysed by powder XRD, FE-SEM and FT-IR. It is found that manganese oxide prepared using formic acid and sodium thiosulphate have nanorod or nanowire type morphology as confirmed by FE-SEM analysis. Electrochemical properties of samples are studied in aqueous medium (1 M Na2SO4) by cyclic voltammetry and galvanostatic charge-discharge techniques. Due to the rod type structure formic acid sample shows high surface area (117 m(2)g(-1)) and high porosity (0.1331 cc g(-1)), which results into high specific capacitance of 155 Fg(-1) at 0.64 Ag-1.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J].
Beaudrouet, E. ;
La Salle, A. Le Gal ;
Guyomard, D. .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1240-1248
[2]   Vibrational spectroscopy of bulk and supported manganese oxides [J].
Buciuman, F ;
Patcas, F ;
Craciun, R ;
Zahn, DRT .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (01) :185-190
[3]   Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation [J].
Chen, George Z. .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2013, 23 (03) :245-255
[4]   A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte [J].
Chodankar, Nilesh R. ;
Dubal, Deepak P. ;
Gund, Girish S. ;
Lokhande, Chandrakant D. .
JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (03) :463-471
[5]   Alcohol mediated growth of α-MnO2 thin films from KMnO4 precursor for high performance supercapacitors [J].
Chodankar, Nilesh R. ;
Gund, Girish S. ;
Dubal, Deepak P. ;
Lokhande, Chandrakant D. .
RSC ADVANCES, 2014, 4 (106) :61503-61513
[6]   Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films [J].
Chou, Shulei ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :727-734
[7]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[8]   ELECTRICAL-PROPERTIES AND CATION VALENCIES IN MN3O4 [J].
DORRIS, SE ;
MASON, TO .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (05) :379-385
[9]   Three-dimensionally intercrossing Mn3O4 nanowires [J].
Du, Chunsheng ;
Yun, Jondo ;
Dumas, Randy K. ;
Yuan, Xiaoyou ;
Liu, Kai ;
Browning, Nigel D. ;
Pan, Ning .
ACTA MATERIALIA, 2008, 56 (14) :3516-3522
[10]   Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors [J].
Dywili, Nomxolisi R. ;
Ntziouni, Afroditi ;
Ikpo, Chinwe ;
Ndipingwi, Miranda ;
Hlongwa, Ntuthuko W. ;
Yonkeu, Anne L. D. ;
Masikini, Milua ;
Kordatos, Konstantinos ;
Iwuoha, Emmanuel I. .
MICROMACHINES, 2019, 10 (02)