Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms

被引:57
|
作者
Neshat, Mohammadreza [1 ]
Abbasi, Alireza [1 ]
Hosseinzadeh, Abdulhadi [1 ]
Sarikhani, Mohammad Reza [2 ]
Chavan, Davood Dadashi [3 ]
Rasoulnia, Abdolrahman [1 ]
机构
[1] Univ Tehran, Coll Agr & Nat Resources, Agron & Plant Breeding Dept, POB 31587-11167, Karaj, Iran
[2] Univ Tabriz, Fac Agr, Soil Sci Dept, 29 Bahman Blvd,POB 51666-16471, Tabriz, Iran
[3] Univ Tabriz, Fac Agr, Plant Biotechnol & Breeding Dept, 29 Bahman Blvd,POB 51666-16471, Tabriz, Iran
关键词
Salinity; PGPRs; Canola; Antioxidant enzyme; SALT TOLERANCE; CHLOROPHYLL FLUORESCENCE; RHIZOBACTERIA; SEEDLINGS; SOIL; L; POTASSIUM; DROUGHT; PROLINE; ENZYME;
D O I
10.1007/s12298-022-01128-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is one of the most severe abiotic stress in the world. Also, the irrigated lands have been treated with second salinity. Canola is one of the most important industrial crops for oil production all over the world which is affected by salinity. Salt stress causes imbalanced ion hemostasis (Na+ and K+) and interrupted mineral absorption in canola. Also, salinity stress leads to oxidative stress (production and accumulation of reactive oxygen species (ROS). Accumulation of ROS is extremely dangerous and lethal for plants. As a consequence, canola production is reduced under salinity stress. So, a suitable approach should be found to deal with salinity stress and prevent the loss of production oilseed. Plant growth-promoting rhizobacteria (PGPR) can colonize on the plant root surface and alleviate the salt stress effect by providing minerals like nitrogen, phosphate, and potassium. Also, they alleviate salt stress by phytohormones like auxin (IAA), cytokinin (CK), and abscisic acid (ABA). This study focus on physiological parameters like leaf area (LA), root length (RL), shoot length (SL), chlorophyll fluorescence indexes (F-v/F-m and F-v/F-0), relative water content (RWC), electrolyte leakage index (ELI), photosynthesis pigments (chlorophyll a, b, and carotenoids), Na+, and K+; and biochemical parameters like malondialdehyde (MDA) content, hydrogen peroxide content (H2O2), total protein content, proline, antioxidant capacity, and antioxidant enzyme activities in canola through the inoculation with Enterobacter sp. S16-3 and Pseudomonas sp. C16-2O. This study showed that LA, RL, SL, chlorophyll fluorescence indexes, RWC were significantly increased and ELI was significantly decreased in bacteria inoculated treatments. Also, MDA, H2O2 were decreased, and antioxidant capacity, proline, and antioxidant enzymes were increased due to inoculation with these bacteria. Besides, the amount of K+ as an index of salinity tolerance significantly increased, and leaf Na+ content was significantly decreased.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 50 条
  • [41] Alleviating the adverse effects of plant pathogens, drought and salinity stress factors using plant growth promoting bacteria
    Omar, Ayman F.
    Rehan, Medhat
    Al-Turki, Ahmad
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (04)
  • [42] Halotolerant Plant Growth-Promoting Rhizobacteria Induce Salinity Tolerance in Wheat by Enhancing the Expression of SOS Genes
    Urooj Haroon
    Maria Khizar
    Fiza Liaquat
    Musrat Ali
    Mahnoor Akbar
    Kinza Tahir
    Syeda Saira Batool
    Asif Kamal
    Hassan Javed Chaudhary
    Muhammad Farooq Hussain Munis
    Journal of Plant Growth Regulation, 2022, 41 : 2435 - 2448
  • [43] Halotolerant Plant Growth-Promoting Rhizobacteria Induce Salinity Tolerance in Wheat by Enhancing the Expression of SOS Genes
    Haroon, Urooj
    Khizar, Maria
    Liaquat, Fiza
    Ali, Musrat
    Akbar, Mahnoor
    Tahir, Kinza
    Batool, Syeda Saira
    Kamal, Asif
    Chaudhary, Hassan Javed
    Munis, Muhammad Farooq Hussain
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (06) : 2435 - 2448
  • [44] Ameliorative Effect of Humic Acid and Plant Growth-Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress
    Esringu, Aslihan
    Kaynar, Dilara
    Turan, Metin
    Ercisli, Sezai
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (05) : 602 - 618
  • [45] Demonstration of Borage Salinity Tolerance as affected by Si Application Through Biochemical and Physiological Responses, and Growth Attributes
    Feghhenabi, Farideh
    Hadi, Hashem
    Khodaverdiloo, Habib
    van Genuchten, Martinus Th.
    Lake, Lachlan
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (02) : 1678 - 1693
  • [46] Demonstration of Borage Salinity Tolerance as affected by Si Application Through Biochemical and Physiological Responses, and Growth Attributes
    Farideh Feghhenabi
    Hashem Hadi
    Habib Khodaverdiloo
    Martinus Th. van Genuchten
    Lachlan Lake
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 1678 - 1693
  • [47] Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes
    Afridi, Muhammad Siddique
    Amna
    Sumaira
    Mahmoode, Tariq
    Salam, Abdul
    Mukhtar, Tehmeena
    Mehmood, Shehzad
    Ali, Javed
    Khatoon, Zobia
    Bibi, Maryam
    Javed, Muhammad Tariq
    Sultan, Tariq
    Chaudhary, Hassan Javed
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 139 : 569 - 577
  • [48] ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum
    Gupta, Anmol
    Bano, Ambreen
    Rai, Smita
    Kumar, Manoj
    Ali, Jasarat
    Sharma, Swati
    Pathak, Neelam
    3 BIOTECH, 2021, 11 (12)
  • [49] ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum
    Anmol Gupta
    Ambreen Bano
    Smita Rai
    Manoj Kumar
    Jasarat Ali
    Swati Sharma
    Neelam Pathak
    3 Biotech, 2021, 11
  • [50] Modulation of plant transcription factors and priming of stress tolerance by plant growth-promoting bacteria: a systematic review
    Kaleh, Abdussabur M.
    Singh, Pooja
    Chua, Kah Ooi
    Harikrishna, Jennifer Ann
    ANNALS OF BOTANY, 2024, 135 (03) : 387 - 402