Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms

被引:57
作者
Neshat, Mohammadreza [1 ]
Abbasi, Alireza [1 ]
Hosseinzadeh, Abdulhadi [1 ]
Sarikhani, Mohammad Reza [2 ]
Chavan, Davood Dadashi [3 ]
Rasoulnia, Abdolrahman [1 ]
机构
[1] Univ Tehran, Coll Agr & Nat Resources, Agron & Plant Breeding Dept, POB 31587-11167, Karaj, Iran
[2] Univ Tabriz, Fac Agr, Soil Sci Dept, 29 Bahman Blvd,POB 51666-16471, Tabriz, Iran
[3] Univ Tabriz, Fac Agr, Plant Biotechnol & Breeding Dept, 29 Bahman Blvd,POB 51666-16471, Tabriz, Iran
关键词
Salinity; PGPRs; Canola; Antioxidant enzyme; SALT TOLERANCE; CHLOROPHYLL FLUORESCENCE; RHIZOBACTERIA; SEEDLINGS; SOIL; L; POTASSIUM; DROUGHT; PROLINE; ENZYME;
D O I
10.1007/s12298-022-01128-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is one of the most severe abiotic stress in the world. Also, the irrigated lands have been treated with second salinity. Canola is one of the most important industrial crops for oil production all over the world which is affected by salinity. Salt stress causes imbalanced ion hemostasis (Na+ and K+) and interrupted mineral absorption in canola. Also, salinity stress leads to oxidative stress (production and accumulation of reactive oxygen species (ROS). Accumulation of ROS is extremely dangerous and lethal for plants. As a consequence, canola production is reduced under salinity stress. So, a suitable approach should be found to deal with salinity stress and prevent the loss of production oilseed. Plant growth-promoting rhizobacteria (PGPR) can colonize on the plant root surface and alleviate the salt stress effect by providing minerals like nitrogen, phosphate, and potassium. Also, they alleviate salt stress by phytohormones like auxin (IAA), cytokinin (CK), and abscisic acid (ABA). This study focus on physiological parameters like leaf area (LA), root length (RL), shoot length (SL), chlorophyll fluorescence indexes (F-v/F-m and F-v/F-0), relative water content (RWC), electrolyte leakage index (ELI), photosynthesis pigments (chlorophyll a, b, and carotenoids), Na+, and K+; and biochemical parameters like malondialdehyde (MDA) content, hydrogen peroxide content (H2O2), total protein content, proline, antioxidant capacity, and antioxidant enzyme activities in canola through the inoculation with Enterobacter sp. S16-3 and Pseudomonas sp. C16-2O. This study showed that LA, RL, SL, chlorophyll fluorescence indexes, RWC were significantly increased and ELI was significantly decreased in bacteria inoculated treatments. Also, MDA, H2O2 were decreased, and antioxidant capacity, proline, and antioxidant enzymes were increased due to inoculation with these bacteria. Besides, the amount of K+ as an index of salinity tolerance significantly increased, and leaf Na+ content was significantly decreased.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 50 条
  • [41] Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde
    Cruz, Catarina
    Cardoso, Paulo
    Santos, Jacinta
    Matos, Diana
    Figueira, Etelvina
    PLANTS-BASEL, 2022, 11 (21):
  • [42] Alleviating the adverse effects of plant pathogens, drought and salinity stress factors using plant growth promoting bacteria
    Omar, Ayman F.
    Rehan, Medhat
    Al-Turki, Ahmad
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (04)
  • [43] Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress
    Santos, Alexandra de Andrade
    Gomes da Silveira, Joaquim Albenisio
    Bonifacio, Aureniuia
    Rodrigues, Artenisa Cerqueira
    Barreto Figueiredo, Marcia do Vale
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2018, 49 (03) : 513 - 521
  • [44] Demonstration of Borage Salinity Tolerance as affected by Si Application Through Biochemical and Physiological Responses, and Growth Attributes
    Farideh Feghhenabi
    Hashem Hadi
    Habib Khodaverdiloo
    Martinus Th. van Genuchten
    Lachlan Lake
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 1678 - 1693
  • [45] Demonstration of Borage Salinity Tolerance as affected by Si Application Through Biochemical and Physiological Responses, and Growth Attributes
    Feghhenabi, Farideh
    Hadi, Hashem
    Khodaverdiloo, Habib
    van Genuchten, Martinus Th.
    Lake, Lachlan
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (02) : 1678 - 1693
  • [46] Physiological and Biochemical Responses to Water Stress and Salinity of the Invasive Moth Plant, Araujia sericifera Brot., during Seed Germination and Vegetative Growth
    Bellache, Manel
    Molto, Nadia
    Benfekih, Leila Allal
    Torres-Pagan, Natalia
    Mir, Ricardo
    Verdeguer, Mercedes
    Boscaiu, Monica
    Vicente, Oscar
    AGRONOMY-BASEL, 2022, 12 (02):
  • [47] ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum
    Gupta, Anmol
    Bano, Ambreen
    Rai, Smita
    Kumar, Manoj
    Ali, Jasarat
    Sharma, Swati
    Pathak, Neelam
    3 BIOTECH, 2021, 11 (12)
  • [48] Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress
    Banik, Avishek
    Pandya, Pooja
    Patel, Bhoomi
    Rathod, Chirag
    Dangar, Maya
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 630 : 231 - 242
  • [49] Physiological and Genetic Modifications Induced by Plant-Growth-Promoting Rhizobacteria (PGPR) in Tomato Plants under Moderate Water Stress
    Lucas, Jose Antonio
    Garcia-Villaraco, Ana
    Montero-Palmero, Maria Belen
    Montalban, Blanca
    Ramos Solano, Beatriz
    Gutierrez-Manero, Francisco Javier
    BIOLOGY-BASEL, 2023, 12 (07):
  • [50] Enhancing Water Deficit Stress Tolerance in Wheat: Synergistic Effects of Silicon Nanoparticles and Plant Growth-Promoting Bacteria
    Davoudi, Faezeh
    Jalali, Mahboobeh
    Valizadeh-Rad, Keyvan
    Etesami, Hassan
    SILICON, 2024, 16 (18) : 6525 - 6540