Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms

被引:57
|
作者
Neshat, Mohammadreza [1 ]
Abbasi, Alireza [1 ]
Hosseinzadeh, Abdulhadi [1 ]
Sarikhani, Mohammad Reza [2 ]
Chavan, Davood Dadashi [3 ]
Rasoulnia, Abdolrahman [1 ]
机构
[1] Univ Tehran, Coll Agr & Nat Resources, Agron & Plant Breeding Dept, POB 31587-11167, Karaj, Iran
[2] Univ Tabriz, Fac Agr, Soil Sci Dept, 29 Bahman Blvd,POB 51666-16471, Tabriz, Iran
[3] Univ Tabriz, Fac Agr, Plant Biotechnol & Breeding Dept, 29 Bahman Blvd,POB 51666-16471, Tabriz, Iran
关键词
Salinity; PGPRs; Canola; Antioxidant enzyme; SALT TOLERANCE; CHLOROPHYLL FLUORESCENCE; RHIZOBACTERIA; SEEDLINGS; SOIL; L; POTASSIUM; DROUGHT; PROLINE; ENZYME;
D O I
10.1007/s12298-022-01128-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is one of the most severe abiotic stress in the world. Also, the irrigated lands have been treated with second salinity. Canola is one of the most important industrial crops for oil production all over the world which is affected by salinity. Salt stress causes imbalanced ion hemostasis (Na+ and K+) and interrupted mineral absorption in canola. Also, salinity stress leads to oxidative stress (production and accumulation of reactive oxygen species (ROS). Accumulation of ROS is extremely dangerous and lethal for plants. As a consequence, canola production is reduced under salinity stress. So, a suitable approach should be found to deal with salinity stress and prevent the loss of production oilseed. Plant growth-promoting rhizobacteria (PGPR) can colonize on the plant root surface and alleviate the salt stress effect by providing minerals like nitrogen, phosphate, and potassium. Also, they alleviate salt stress by phytohormones like auxin (IAA), cytokinin (CK), and abscisic acid (ABA). This study focus on physiological parameters like leaf area (LA), root length (RL), shoot length (SL), chlorophyll fluorescence indexes (F-v/F-m and F-v/F-0), relative water content (RWC), electrolyte leakage index (ELI), photosynthesis pigments (chlorophyll a, b, and carotenoids), Na+, and K+; and biochemical parameters like malondialdehyde (MDA) content, hydrogen peroxide content (H2O2), total protein content, proline, antioxidant capacity, and antioxidant enzyme activities in canola through the inoculation with Enterobacter sp. S16-3 and Pseudomonas sp. C16-2O. This study showed that LA, RL, SL, chlorophyll fluorescence indexes, RWC were significantly increased and ELI was significantly decreased in bacteria inoculated treatments. Also, MDA, H2O2 were decreased, and antioxidant capacity, proline, and antioxidant enzymes were increased due to inoculation with these bacteria. Besides, the amount of K+ as an index of salinity tolerance significantly increased, and leaf Na+ content was significantly decreased.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 50 条
  • [21] Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.)
    Saleem, Muhammad
    Nawaz, Fahim
    Hussain, Muhammad Baqir
    Ikram, Rao Muhammad
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2021, 21 (04) : 3461 - 3476
  • [22] Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper
    del Amor, Francisco M.
    Cuadra-Crespo, Paula
    FUNCTIONAL PLANT BIOLOGY, 2012, 39 (01) : 82 - 90
  • [23] Halotolerant Plant Growth-Promoting Rhizobacteria Induce Salinity Tolerance in Wheat by Enhancing the Expression of SOS Genes
    Haroon, Urooj
    Khizar, Maria
    Liaquat, Fiza
    Ali, Musrat
    Akbar, Mahnoor
    Tahir, Kinza
    Batool, Syeda Saira
    Kamal, Asif
    Chaudhary, Hassan Javed
    Munis, Muhammad Farooq Hussain
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (06) : 2435 - 2448
  • [24] Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms
    Bashir, Sheikh Shanawaz
    Hussain, Anjuman
    Hussain, Sofi Javed
    Wani, Owais Ali
    Nabi, Sheikh Zahid
    Dar, Niyaz A.
    Baloch, Faheem Shehzad
    Mansoor, Sheikh
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1912 - 1925
  • [25] Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria
    Najafi Zilaie, Mahmood
    Mosleh Arani, Asghar
    Etesami, Hassan
    Dinarvand, Mehri
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [26] Ameliorative Effect of Humic Acid and Plant Growth-Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress
    Esringu, Aslihan
    Kaynar, Dilara
    Turan, Metin
    Ercisli, Sezai
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (05) : 602 - 618
  • [27] Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes
    Afridi, Muhammad Siddique
    Amna
    Sumaira
    Mahmoode, Tariq
    Salam, Abdul
    Mukhtar, Tehmeena
    Mehmood, Shehzad
    Ali, Javed
    Khatoon, Zobia
    Bibi, Maryam
    Javed, Muhammad Tariq
    Sultan, Tariq
    Chaudhary, Hassan Javed
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 139 : 569 - 577
  • [28] Plant-growth-promoting bacteria from rhizosphere of Chilean common bean ecotype (Phaseolus vulgaris L.) supporting seed germination and growth against salinity stress
    Meza, Cynthia
    Valenzuela, Francisca
    Echeverria-Vega, Alex
    Gomez, Aleydis
    Sarkar, Shrabana
    Cabeza, Ricardo A.
    Arencibia, Ariel D.
    Quiroz, Karla
    Carrasco, Basilio
    Banerjee, Aparna
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [29] Reduction of Salinity Stress in Wheat through Seed Bio-Priming with Mycorrhiza and Growth-Promoting Bacteria and its Effect on Physiological Traits and Plant Antioxidant Activity with Silicon Nanoparticles Application
    Ahmadi-Nouraldinvand, Farnaz
    Sharifi, Raouf Seyed
    Siadat, Seyed Ataollah
    Khalilzadeh, Razieh
    SILICON, 2023, 15 (16) : 6813 - 6824
  • [30] Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms
    Jameel, Jawaria
    Anwar, Tauseef
    Majeed, Saadat
    Qureshi, Huma
    Siddiqi, Ejaz Hussain
    Sana, Sundas
    Zaman, Wajid
    Ali, Hayssam M.
    BMC PLANT BIOLOGY, 2024, 24 (01)