Various localized nonlinear wave structures in the (2+1)-dimensional KdV system

被引:2
|
作者
Chen, Jing [1 ]
Liu, Yaqing [2 ]
Piao, Linhua [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 13期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
N-soliton solution; breather soliton; lump soliton; interaction solutions; LUMP-KINK SOLUTIONS; N-SOLITON SOLUTIONS; RATIONAL SOLUTIONS; RESIDUAL SYMMETRIES; EQUATION; INTEGRABILITY; EVOLUTION;
D O I
10.1142/S0217984920501286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Korteweg-de-Vries (KdV) equation has many applications such as in the description of shallow water waves and ion-acoustic waves in plasmas. In this paper, we investigate the novel nonlinear wave structures in the (2 + 1)-dimensional KdV system. Starting from the N-soliton solution of the (2 + 1)-dimensional KdV system, some new interaction phenomena of line soliton, breather soliton and lump soliton are found based on the Hirota bilinear method and the long wave limit method. The interaction processes of such solutions are shown graphically to display the novel nonlinear structures in this system. These interesting phenomena in this work could be helpful for understanding certain physical phenomena in nonlinear optics and relevant fields.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Vector solitons for the (2+1)-dimensional coupled nonlinear Schrodinger system in the Kerr nonlinear optical fiber
    Sun, Yan
    Tian, Bo
    Qu, Qi-Xing
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Shan, Wen-Rui
    Jiang, Yan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [22] The novel solitary wave structures and interactions in the (2+1)-dimensional Kortweg-de Vries system
    Dai, Chao-Qing
    Wang, Yue-Yue
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) : 453 - 461
  • [23] Nonlinear localized waves and their interactions for a (2+1)-dimensional extended Bogoyavlenskii-Kadomtsev-Petviashvili equation in a fluid
    Cheng, Chong-Dong
    Tian, Bo
    Zhou, Tian-Yu
    Shen, Yuan
    WAVE MOTION, 2024, 125
  • [24] Compacton and peakon structures in the (2+1)dimensional dispersive long wave equation
    Zhang, JF
    Meng, JP
    Liu, YL
    RECENT ADVANCES IN FLUID MECHANICS, 2004, : 322 - 325
  • [25] Determinant structure for the (2+1)-dimensional dispersive long wave system
    Hu, Juan
    Xu, Zong-Wei
    Yu, Guo-Fu
    APPLIED MATHEMATICS LETTERS, 2016, 62 : 76 - 83
  • [26] Integrability and lump solutions to an extended (2+1)-dimensional KdV equation
    Cheng, Li
    Ma, Wen Xiu
    Zhang, Yi
    Ge, Jian Ya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08)
  • [27] Plenteous stationary wave patterns for (2+1) dimensional fokas system
    Thilakavathy, J.
    Amrutha, R.
    Subramanian, K.
    Sivatharani, B.
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [28] Complex solutions and novel complex wave localized excitations for the (2+1)-dimensional Boiti-Leon-Pempinelli system
    Ma Song-Hua
    Xu Gen-Hai
    Zhu Hai-Ping
    CHINESE PHYSICS B, 2014, 23 (05)
  • [29] Resonant line wave soliton solutions and interaction solutions for (2+1)-dimensional nonlinear wave equation
    Chen, Qingqing
    Qi, Zequn
    Chen, Junchao
    Li, Biao
    RESULTS IN PHYSICS, 2021, 27
  • [30] Lie symmetry analysis of (2+1)-dimensional KdV equations with variable coefficients
    de la Rosa, R.
    Recio, E.
    Garrido, T. M.
    Bruzon, M. S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (1-2) : 330 - 340