Image Classification Using Convolutional Neural Networks With Multi-stage Feature

被引:25
|
作者
Yim, Junho [1 ]
Ju, Jeongwoo [1 ]
Jung, Heechul [1 ]
Kim, Junmo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, 291 Daehak Ro, Daejeon, South Korea
关键词
D O I
10.1007/978-3-319-16841-8_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) have been widely used in automatic image classification systems. In most cases, features from the top layer of the CNN are utilized for classification; however, those features may not contain enough useful information to predict an image correctly. In some cases, features from the lower layer carry more discriminative power than those from the top. Therefore, applying features from a specific layer only to classification seems to be a process that does not utilize learned CNN's potential discriminant power to its full extent. This inherent property leads to the need for fusion of features from multiple layers. To address this problem, we propose a method of combining features from multiple layers in given CNN models. Moreover, already learned CNN models with training images are reused to extract features from multiple layers. The proposed fusion method is evaluated according to image classification benchmark data sets, CIFAR-10, NORB, and SVHN. In all cases, we show that the proposed method improves the reported performances of the existing models by 0.38%, 3.22% and 0.13%, respectively.
引用
收藏
页码:587 / 594
页数:8
相关论文
共 50 条
  • [1] Convolutional Neural Networks for Multi-Stage Semiconductor Processes
    Wu, Xiaofei
    Chen, Junghui
    Xie, Lei
    Lee, Yishan
    Chen, Chun-, I
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2021, 54 (08) : 449 - 455
  • [2] A Vehicle Detection Using Selective Multi-stage Features in Convolutional Neural Networks
    Lee, Won Jae
    Pae, Dong Sung
    Kim, Dong Won
    Lim, Myo Taeg
    2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 1 - 3
  • [3] Accelerating Image Classification using Feature Map Similarity in Convolutional Neural Networks
    Park, Keunyoung
    Kim, Doo-Hyun
    APPLIED SCIENCES-BASEL, 2019, 9 (01):
  • [4] Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning
    Gao, Qishuo
    Lim, Samsung
    Jia, Xiuping
    REMOTE SENSING, 2018, 10 (02)
  • [5] Ensemble of multi-stage deep convolutional neural networks for automated grading of diabetic retinopathy using image patches
    Deepa, V.
    Kumar, C. Sathish
    Cherian, Thomas
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 6255 - 6265
  • [6] Multi-stage Spatial Feature Integration for Multispectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Zhang, Yating
    Zheng, Yongchang
    Bao, Jie
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 131 - 135
  • [7] Parallel multi-stage features fusion of deep convolutional neural networks for aerial scene classification
    Ye, Lihua
    Wang, Lei
    Sun, Yaxin
    Zhao, Liping
    Wei, Yuanwang
    REMOTE SENSING LETTERS, 2018, 9 (03) : 294 - 303
  • [8] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [9] Feature Correlation Loss in Convolutional Neural Networks for Image Classification
    Zhou, Jiahuan
    Xiao, Di
    Zhang, Mengyi
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 219 - 223
  • [10] Articulatory Feature Classification Using Convolutional Neural Networks
    Merkx, Danny
    Scharenborg, Odette
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2142 - 2146