Convergence Analysis of Hybrid High-Order Methods for the Wave Equation

被引:15
作者
Burman, Erik [1 ]
Duran, Omar [2 ,3 ]
Ern, Alexandre [2 ,3 ]
Steins, Morgane [2 ,3 ,4 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
[3] INRIA Paris, F-75589 Paris, France
[4] Univ Paris Saclay, CEA, DEN Serv Etud Mecan & Therm SEMT, F-91191 Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
Hybrid high-order methods; Error analysis; Wave equation; Elastodynamics; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT METHODS; HDG METHODS; DISCRETIZATION; TIME;
D O I
10.1007/s10915-021-01492-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove error estimates for the wave equation semi-discretized in space by the hybrid high-order (HHO) method. These estimates lead to optimal convergence rates for smooth solutions. We consider first the second-order formulation in time, for which we establish H-1 and L-2-error estimates, and then the first-order formulation, for which we establish H-1-error estimates. For both formulations, the space semi-discrete HHO scheme has close links with hybridizable discontinuous Galerkin schemes from the literature. Numerical experiments using either the Newmark scheme or diagonally-implicit Runge-Kutta schemes for the time discretization illustrate the theoretical findings and show that the proposed numerical schemes can be used to simulate accurately the propagation of elastic waves in heterogeneous media.
引用
收藏
页数:30
相关论文
共 29 条
[1]   A Hybrid High-Order method for incremental associative plasticity with small deformations [J].
Abbas, Mickael ;
Ern, Alexandre ;
Pignet, Nicolas .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 :891-912
[2]   Hybrid High-Order methods for finite deformations of hyperelastic materials [J].
Abbas, Mickael ;
Ern, Alexandre ;
Pignet, Nicolas .
COMPUTATIONAL MECHANICS, 2018, 62 (04) :909-928
[3]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[4]  
Boillot L., 2014, THESIS U PAU PAYS AD
[5]   A HYBRID HIGH-ORDER METHOD FOR NONLINEAR ELASTICITY [J].
Botti, Michele ;
Di Pietro, Daniele A. ;
Sochala, Pierre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) :2687-2717
[6]  
Burman E., 2020, IN PRESS
[7]   Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media [J].
Chou, Ching-Shan ;
Shu, Chi-Wang ;
Xing, Yulong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 :88-107
[8]   A HYBRID HIGH-ORDER DISCRETIZATION COMBINED WITH NITSCHE'S METHOD FOR CONTACT AND TRESCA FRICTION IN SMALL STRAIN ELASTICITY [J].
Chouly, Franz ;
Ern, Alexandre ;
Pignet, Nicolas .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) :A2300-A2324
[9]   Optimal discontinuous Galerkin methods for wave propagation [J].
Chung, Eric T. ;
Engquist, Bjorn .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2131-2158
[10]   Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming [J].
Cicuttin, M. ;
Di Pietro, D. A. ;
Ern, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 :852-874