Realizable lists via the spectra of structured matrices

被引:7
作者
Manzaneda, Cristina [1 ]
Andrade, Enide [2 ]
Robbiano, Maria [1 ]
机构
[1] Univ Catolica Norte, Fac Ciencias, Dept Matemat, Ave Angamos 0610, Antofagasta, Chile
[2] Univ Aveiro, Dept Matemat, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
关键词
Permutative matrix; Symmetric matrix; Inverse eigenvalue problem; Nonnegative matrix; INVERSE EIGENVALUE PROBLEM; NONNEGATIVE MATRICES; CONSTRUCTION;
D O I
10.1016/j.laa.2017.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A square matrix of order n with n >= 2 is called a permutative matrix or permutative when all its rows (up to the first one) are permutations of precisely its first row. In this paper, the spectra of a class of permutative matrices are studied. In particular, spectral results for matrices partitioned into 2-by-2 symmetric blocks are presented and, using these results sufficient conditions on a given list to be the list of eigenvalues of a nonnegative permutative matrix are obtained and the corresponding permutative matrices are constructed. Guo perturbations on given lists are exhibited. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 72
页数:22
相关论文
共 26 条
[1]  
BOROBIA A, 1995, LINEAR ALGEBRA APPL, V224, P131
[2]   THE SPECTRA OF NONNEGATIVE MATRICES VIA SYMBOLIC DYNAMICS [J].
BOYLE, M ;
HANDELMAN, D .
ANNALS OF MATHEMATICS, 1991, 133 (02) :249-316
[3]  
Fiedler M., 1974, Linear Algebra and Its Applications, V9, P119, DOI 10.1016/0024-3795(74)90031-7
[4]   INVERSE PROBLEM FOR NONNEGATIVE AND EVENTUALLY NONNEGATIVE MATRICES [J].
FRIEDLAND, S .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (01) :43-60
[5]  
Guo WW, 1997, LINEAR ALGEBRA APPL, V266, P261
[6]   Ranks of permutative matrices [J].
Hu, Xiaonan ;
Johnson, Charles R. ;
Davis, Caroline E. ;
Zhang, Yimeng .
SPECIAL MATRICES, 2016, 4 (01) :233-246
[7]  
Johnson C.R., 1981, Linear Multilinear Algebra, V10, P113, DOI DOI 10.1080/03081088108817402
[8]   The real and the symmetric nonnegative inverse eigenvalue problems are different [J].
Johnson, CR ;
Laffey, TJ ;
Loewy, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) :3647-3651
[9]  
Laffey T., 1998, TEXTOS MAT SER B, V19, P21
[10]   Construction of nonnegative symmetric matrices with given spectrum [J].
Laffey, Thomas J. ;
Smigoc, Helena .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) :97-109