Modeling a minimal spanning tree

被引:2
作者
Liu, Haigang [1 ]
Modarres, Reza [1 ]
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
关键词
Dirichlet; Gini index; Lorenz Curve; Minimal Spanning Tree; Multivariate beta; INTERPOINT DISTANCE DISTRIBUTION; TESTS;
D O I
10.1080/03610918.2016.1148726
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We model the distribution of the normalized interpoint distances (IDs) on the minimal spanning tree (MST) using multivariate beta vectors. We use a multivariate normal copula with beta marginals and a Dirichlet distribution to obtain beta vectors. Based on the normalized ordered IDs of the MST, we define a multivariate Gini index to measure the scatter of a data cloud. An example considers the MST of numerals in 11 European languages and obtains their Gini index. A simulation study compares the Gini index, the maximum and the range of the IDs for multivariate normal and log-normal data, with the results of modeling the distances on the MST.
引用
收藏
页码:5246 / 5256
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2010, Permutation Tests for Complex Data: Theory, Applications and Software, DOI 10.1002/9780470689516
[2]   The interpoint distance distribution as a descriptor of point patterns, with an application to spatial disease clustering [J].
Bonetti, M ;
Pagano, M .
STATISTICS IN MEDICINE, 2005, 24 (05) :753-773
[3]   MINIMAL SPANNING TREE ANALYSIS OF BIOLOGICAL STRUCTURES [J].
DUSSERT, C ;
RASIGNI, M ;
PALMARI, J ;
RASIGNI, G ;
LLEBARIA, A ;
MARTY, F .
JOURNAL OF THEORETICAL BIOLOGY, 1987, 125 (03) :317-323
[4]   A NEW STATISTICAL APPROACH TO GEOGRAPHIC VARIATION ANALYSIS [J].
GABRIEL, KR ;
SOKAL, RR .
SYSTEMATIC ZOOLOGY, 1969, 18 (03) :259-&
[5]  
GOWER JC, 1969, ROY STAT SOC C-APP, V18, P54
[6]  
Johnson R. A, 2007, APPL MULTIVARIATE ST, V6th, DOI DOI 10.4236/JWARP.2010.26066
[7]  
Kibble W. F., 1945, MATH P CAMBRIDGE PHI, P12
[8]  
Kotz S., 2004, WILEY SER PROB STAT, V1
[9]  
Kruskal J. B., 1956, Proceedings of the American Mathematical Society, V7, P48, DOI DOI 10.1090/S0002-9939-1956-0078686-7
[10]   GENERATION OF PSEUDORANDOM NUMBERS WITH SPECIFIED UNIVARIATE DISTRIBUTIONS AND CORRELATION-COEFFICIENTS [J].
LI, ST ;
HAMMOND, JL .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1975, 5 (05) :557-561