Characterization of the Nocardiopsin Biosynthetic Gene Cluster Reveals Similarities to and Differences from the Rapamycin and FK-506 Pathways

被引:15
作者
Bis, Dana M. [1 ]
Ban, Yang H. [1 ]
James, Elle D. [1 ]
Alqahtani, Norah [2 ]
Viswanathan, Rajesh [2 ]
Lane, Amy L. [1 ]
机构
[1] Univ N Florida, Dept Chem, Jacksonville, FL 32224 USA
[2] Case Western Reserve Univ, Dept Chem, Millis Sci Ctr, Cleveland, OH 44106 USA
关键词
biosynthesis; macrolides; natural products; pipecolic acid; polyketides; STREPTOMYCES; POLYKETIDE; DOMAIN; FERMENTATION; MERIDAMYCIN; PREDICTION; COMPLEX; RING; DNA;
D O I
10.1002/cbic.201500007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macrolide-pipecolate natural products, such as rapamycin (1) and FK-506 (2), are renowned modulators of FK506-binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB-M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A-D (4-7) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L-lysine into the L-pipecolic acid incorporated into 4 and 5. Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP-binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal.
引用
收藏
页码:990 / 997
页数:8
相关论文
共 43 条
[1]   Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site [J].
Arand, M ;
Hallberg, BM ;
Zou, JY ;
Bergfors, T ;
Oesch, F ;
van der Werf, MJ ;
de Bont, JAM ;
Jones, TA ;
Mowbray, SL .
EMBO JOURNAL, 2003, 22 (11) :2583-2592
[2]   METHODS FOR IN SILICO PREDICTION OF MICROBIAL POLYKETIDE AND NONRIBOSOMAL PEPTIDE BIOSYNTHETIC PATHWAYS FROM DNA SEQUENCE DATA [J].
Bachmann, Brian O. ;
Ravel, Jacques .
COMPLEX ENZYMES IN MICROBIAL NATURAL PRODUCT BIOSYNTHESIS, PART A: OVERVIEW ARTICLES AND PEPTIDES, 2009, 458 :181-217
[3]  
Berkhan G., 2014, ANGEW CHEM, V126, P14464
[4]   A Dehydratase Domain in Ambruticin Biosynthesis Displays Additional Activity as a Pyran-Forming Cyclase [J].
Berkhan, Gesche ;
Hahn, Frank .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (51) :14240-14244
[5]   GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions [J].
Besemer, J ;
Lomsadze, A ;
Borodovsky, M .
NUCLEIC ACIDS RESEARCH, 2001, 29 (12) :2607-2618
[6]   Carrier protein substrates in cytochrome P450-catalysed oxidation [J].
Cryle, Max J. .
METALLOMICS, 2011, 3 (04) :323-326
[7]   Isolation and Characterization of the Gene Cluster for Biosynthesis of the Thiopeptide Antibiotic TP-1161 [J].
Engelhardt, Kerstin ;
Degnes, Kristin F. ;
Zotchev, Sergey B. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (21) :7093-7101
[8]   Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster [J].
Gatto, GJ ;
Boyne, MT ;
Kelleher, NL ;
Walsh, CT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (11) :3838-3847
[9]   Elucidating the substrate specificity and condensation domain activity of FkbP, the FK520 pipecolate-incorporating enzyme [J].
Gatto, GJ ;
McLoughlin, SM ;
Kelleher, NL ;
Walsh, CT .
BIOCHEMISTRY, 2005, 44 (16) :5993-6002
[10]   Recent advances in the chemistry, biosynthesis and pharmacology of rapamycin analogs [J].
Graziani, Edmund I. .
NATURAL PRODUCT REPORTS, 2009, 26 (05) :602-609