Direct Measurement of the Triplet Exciton Diffusion Length in Organic Semiconductors

被引:45
作者
Mikhnenko, Oleksandr V. [1 ,2 ]
Ruiter, Roald [1 ]
Blom, Paul W. M. [1 ,3 ]
Loi, Maria Antonietta [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
[3] Holst Ctr, NL-5605 KN Eindhoven, Netherlands
关键词
LIGHT-EMITTING-DIODES; TRANSIENT ANALYSIS; THIN-FILM; SINGLET; ELECTROPHOSPHORESCENCE; FLUORESCENT; EFFICIENCY; PORPHYRIN; DYNAMICS; DEVICES;
D O I
10.1103/PhysRevLett.108.137401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new method to measure the triplet exciton diffusion length in organic semiconductors. N,N'-di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine (NPD) has been used as a model system. Triplet excitons are injected into a thin film of NPD by a phosphorescent thin film, which is optically excited and forms a sharp interface with the NPD layer. The penetration profile of the triplet excitons density is recorded by measuring the emission intensity of another phosphorescent material (detector), which is doped into the NPD film at variable distances from the injecting interface. From the obtained triplet penetration profile we extracted a triplet exciton diffusion length of 87 +/- 2.7 nm. For excitation power densities >1 mW/mm(2) triplet-triplet annihilation processes can significantly limit the triplet penetration depth into organic semiconductor. The proposed sample structure can be further used to study excitonic spin degree of freedom.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Perspective Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics
    Sajjad, Muhammad T.
    Ruseckas, Arvydas
    Samuel, Ifor D. W.
    MATTER, 2020, 3 (02) : 341 - 354
  • [42] Exciton diffusion in monolayer semiconductors with suppressed disorder
    Zipfel, Jonas
    Kulig, Marvin
    Perea-Causin, Raul
    Brem, Samuel
    Ziegler, Jonas D.
    Rosati, Roberto
    Taniguchi, Takashi
    Watanabe, Kenji
    Glazov, Mikhail M.
    Malic, Ermin
    Chernikov, Alexey
    PHYSICAL REVIEW B, 2020, 101 (11)
  • [43] Impact of molecular structure on singlet and triplet exciton diffusion in phenanthroline derivatives
    Rai, Deepesh
    Bangsund, John S.
    Barriocanal, Javier Garcia
    Holmes, Russell J.
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (18) : 6118 - 6123
  • [44] Exciton Diffusion and Halo Effects in Monolayer Semiconductors
    Kulig, Marvin
    Zipfel, Jonas
    Nagler, Philipp
    Blanter, Sofia
    Schueller, Christian
    Korn, Tobias
    Paradiso, Nicola
    Glazov, Mikhail M.
    Chernikov, Alexey
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [45] Simultaneous and direct measurement of carrier diffusion constant and mobility in organic semiconductors and deviation from standard Einstein relation
    Tripathi, Awnish K.
    Tripathi, Durgesh C.
    Mohapatra, Y. N.
    PHYSICAL REVIEW B, 2011, 84 (04):
  • [46] Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length
    Zhu, Tong
    Wan, Yan
    Guo, Zhi
    Johnson, Justin
    Huang, Libai
    ADVANCED MATERIALS, 2016, 28 (34) : 7539 - 7547
  • [47] Exciton diffusion and dissociation in organic and quantum-dot solar cells
    He, Dan
    Zeng, Miao
    Zhang, Zhenzhen
    Bai, Yang
    Xing, Guichuan
    Cheng, Hui-Ming
    Lin, Yuze
    SMARTMAT, 2023, 4 (06):
  • [48] Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field
    Ding, Baofu
    Alameh, Kamal
    APPLIED PHYSICS LETTERS, 2014, 105 (01)
  • [49] Triplet exciton transfer mechanism between phosphorescent organic dye molecules
    Steinbacher, Frank S.
    Krause, Ralf
    Hunze, Arvid
    Winnacker, Albrecht
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (02): : 340 - 346
  • [50] Coherent carrier and exciton transport in organic semiconductors
    Binder, Robert
    Popp, Wjatscheslaw
    Brey, Dominik
    Burghardt, Irene
    NANOPHOTONICS VIII, 2021, 11345