Standing waves for nonlinear Schrodinger equations with a general nonlinearity: One and two dimensional cases

被引:49
作者
Byeon, Jaeyoung [1 ]
Jeanjean, Louis [2 ]
Tanaka, Kazunaga [3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Kyungbuk, South Korea
[2] Univ Franche Comte, CNRS, Equipe Math, UMR 6623, F-25030 Besancon, France
[3] Waseda Univ, Sch Sci & Engn, Dept Math, Tokyo 169, Japan
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
Berestycki-Lions conditions; nonlinear Schrodinger equations; standing waves; variational methods;
D O I
10.1080/03605300701518174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For N=1,2, we consider singularly perturbed elliptic equations epsilon(2) Delta u-V(x) u+f(u)=0, u(x)> 0 on R-N, lim(vertical bar x vertical bar ->infinity) u(x)=0. For small epsilon > 0, we show the existence of a localized bound state solution concentrating at an isolated component of positive local minimum of V under conditions on f we believe to be almost optimal; when N >= 3, it was shown in Byeon and Jeanjean (2007).
引用
收藏
页码:1113 / 1136
页数:24
相关论文
共 33 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[4]  
[Anonymous], 1983, GRUNDLEHREN
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
Berestycki H., 1984, C R ACAD PARIS 1, V297, P307
[7]   Existence of multi-bump standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Oshita, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (11-12) :1877-1904
[8]   Standing waves with a critical frequency for nonlinear Schrodinger equations, II [J].
Byeon, J ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (02) :207-219
[9]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[10]   Standing waves for nonlinear Schrodinger equations with a general nonlinearity [J].
Byeon, Jaeyoung ;
Jeanjean, Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :185-200