DADE'S INVARIANT CONJECTURE FOR THE REE GROUPS 2F4(q2) IN DEFINING CHARACTERISTIC

被引:2
作者
Himstedt, Frank [1 ]
Huang, Shih-Chang [2 ,3 ]
机构
[1] Tech Univ Munich, Zentrum Math M11, D-85748 Garching, Germany
[2] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[3] Natl Ctr Theoret Sci S, Tainan, Taiwan
基金
日本学术振兴会;
关键词
Dade's invariant conjecture; Defining characteristic; Ree groups; COUNTING CHARACTERS; THEOREM; BOREL;
D O I
10.1080/00927872.2010.531994
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We verify Dade's invariant conjecture for the simple Ree groups F-2(4)(2(2n+1)) for all n > 0 in the defining characteristic, i.e., in characteristic 2. Together with the results in [3], this completes the proof of Dade's conjecture for the simple Ree groups F-2(4)(2(2n+1)).
引用
收藏
页码:452 / 496
页数:45
相关论文
共 29 条
[1]  
Alperin J., 1987, ARC C REPR FIN GROUP, V1, P369
[2]  
Alperin J. L., 1975, P C FIN GROUPS PARK, P341
[3]   Uno's invariant conjecture for Steinberg's triality groups in defining characteristic [J].
An, Hanbei ;
Himstedt, Frank ;
Huang, Shih-Chang .
JOURNAL OF ALGEBRA, 2007, 316 (01) :79-108
[4]  
An J., 1996, NZ J MATH, V25, P107
[5]   The Alperin and Dade conjectures for Ree groups 2F4(q2) in non-defining characteristics [J].
An, JB .
JOURNAL OF ALGEBRA, 1998, 203 (01) :30-49
[6]  
[Anonymous], THESIS RWTH AACHEN G
[7]   THEOREM OF BOREL AND TITS FOR FINITE CHEVALLEY GROUPS [J].
BURGOYNE, N ;
WILLIAMSON, C .
ARCHIV DER MATHEMATIK, 1976, 27 (05) :489-491
[8]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[9]  
CHAR BW, 1991, MAPLE, V5
[10]   COUNTING CHARACTERS IN BLOCKS, I [J].
DADE, EC .
INVENTIONES MATHEMATICAE, 1992, 109 (01) :187-210