Predicting enhancer-promoter interaction from genomic sequence with deep neural networks

被引:83
作者
Singh, Shashank [1 ]
Yang, Yang [2 ]
Poczos, Barnabas [1 ]
Ma, Jian [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
chromatin interaction; enhancer-promoter interaction; deep neural network; LONG-RANGE INTERACTIONS; CHROMATIN; BINDING; SITES; PRINCIPLES; INITIATION; LANDSCAPE; TOPOLOGY; PROTEINS; DNA;
D O I
10.1007/s40484-019-0154-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundIn the human genome, distal enhancers are involved in regulating target genes through proximal promoters by forming enhancer-promoter interactions. Although recently developed high-throughput experimental approaches have allowed us to recognize potential enhancer-promoter interactions genome-wide, it is still largely unclear to what extent the sequence-level information encoded in our genome help guide such interactions.MethodsHere we report a new computational method (named "SPEID") using deep learning models to predict enhancer-promoter interactions based on sequence-based features only, when the locations of putative enhancers and promoters in a particular cell type are given.ResultsOur results across six different cell types demonstrate that SPEID is effective in predicting enhancer-promoter interactions as compared to state-of-the-art methods that only use information from a single cell type. As a proof-of-principle, we also applied SPEID to identify somatic non-coding mutations in melanoma samples that may have reduced enhancer-promoter interactions in tumor genomes.ConclusionsThis work demonstrates that deep learning models can help reveal that sequence-based features alone are sufficient to reliably predict enhancer-promoter interactions genome-wide.
引用
收藏
页码:122 / 137
页数:16
相关论文
共 50 条
[41]   COMPARISON OF UNSUPERVISED SEQUENCE ADAPTATIONS FOR DEEP NEURAL NETWORKS [J].
Kobayashi, Akio ;
Onoe, Kazuo ;
Ichiki, Manon ;
Sato, Shoei .
2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, :5860-5864
[42]   Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases [J].
Lu, Leina ;
Liu, Xiaoxiao ;
Huang, Wei-Kai ;
Giusti-Rodriguez, Paola ;
Cui, Jian ;
Zhang, Shanshan ;
Xu, Wanying ;
Wen, Zhexing ;
Ma, Shufeng ;
Rosen, Jonathan D. ;
Xu, Zheng ;
Bartels, Cynthia F. ;
Kawaguchi, Riki ;
Hu, Ming ;
Scacheri, Peter C. ;
Rong, Zhili ;
Li, Yun ;
Sullivan, Patrick F. ;
Song, Hongjun ;
Ming, Guo-li ;
Li, Yan ;
Jin, Fulai .
MOLECULAR CELL, 2020, 79 (03) :521-+
[43]   LOCO-EPI: Leave-one-chromosome-out (LOCO) as a benchmarking paradigm for deep learning based prediction of enhancer-promoter interactions [J].
Tahir, Muhammad ;
Khan, Shehroz S. ;
Davie, James ;
Yamanaka, Soichiro ;
Ashraf, Ahmed .
APPLIED INTELLIGENCE, 2025, 55 (01)
[44]   Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks [J].
Sun, Chengzhang ;
Zhang, Ning ;
Yu, Peng ;
Wu, Xiaolong ;
Li, Qun ;
Li, Tongtong ;
Li, Hao ;
Xiao, Xia ;
Shalmani, Abdullah ;
Li, Leijie ;
Che, Dongxue ;
Wang, Xiaodan ;
Zhang, Peng ;
Chen, Ziyu ;
Liu, Tong ;
Zhao, Jianbang ;
Hua, Jinlian ;
Liao, Mingzhi .
MOLECULAR OMICS, 2020, 16 (05) :455-464
[45]   HSPA12A was identified as a key driver in colorectal cancer GWAS loci 10q26.12 and modulated by an enhancer-promoter interaction [J].
Lu, Zequn ;
Fan, Linyun ;
Zhang, Fuwei ;
Huang, Chaoqun ;
Cai, Yimin ;
Chen, Can ;
Li, Gaoyuan ;
Zhang, Ming ;
Huang, Jinyu ;
Ning, Caibo ;
Li, Yanmin ;
Wang, Wenzhuo ;
Geng, Hui ;
Liu, Yizhuo ;
Chen, Shuoni ;
Li, Hanting ;
Yang, Shuhui ;
Zhang, Heng ;
Tian, Wen ;
Ye, Tianrun ;
Liu, Jiuyang ;
Yang, Xiaojun ;
Xu, Bin ;
Zhu, Ying ;
Zhong, Rong ;
Li, Heng ;
Tian, Jianbo ;
Li, Bin ;
Miao, Xiaoping .
ARCHIVES OF TOXICOLOGY, 2023, 97 (07) :2015-2028
[46]   Predicting Air Ticket Demand using Deep Neural Networks [J].
Imanaka, Kodai ;
Sakama, Chiaki .
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, :2901-2908
[47]   Predicting credit card delinquencies: An application of deep neural networks [J].
Sun, Ting ;
Vasarhelyi, Miklos A. .
INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2018, 25 (04) :174-189
[48]   Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks [J].
Wan, Cen ;
Cozzetto, Domenico ;
Fa, Rui ;
Jones, David T. .
PLOS ONE, 2019, 14 (07)
[49]   RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPα- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction [J].
Ptasinska, Anetta ;
Pickin, Anna ;
Assi, Salam A. ;
Chin, Paulynn Suyin ;
Ames, Luke ;
Avellino, Roberto ;
Groeschel, Stephan ;
Delwel, Ruud ;
Cockerill, Peter N. ;
Osborne, Cameron S. ;
Bonifer, Constanze .
CELL REPORTS, 2019, 28 (12) :3022-+
[50]   The Polycomb protein RING1B enables estrogen-mediated gene expression by promoting enhancer-promoter interaction and R-loop formation [J].
Zhang, Yusheng ;
Liu, Tong ;
Yuan, Fenghua ;
Garcia-Martinez, Liliana ;
Lee, Kyutae D. ;
Stransky, Stephanie ;
Sidoli, Simone ;
Verdun, Ramiro E. ;
Zhang, Yanbin ;
Wang, Zheng ;
Morey, Lluis .
NUCLEIC ACIDS RESEARCH, 2021, 49 (17) :9768-9782