Degradation of ofloxacin by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells

被引:21
作者
Xia, Bin [1 ]
Yao, Juan-juan [1 ]
Han, Chen-xi [1 ]
Zhang, Zhi [1 ]
Chen, Xiang-yu [1 ]
Fang, Yan-juan [1 ]
机构
[1] Chongqing Univ, Key Lab Three Gorges Reservoir Reg Ecoenvironm, Minist Educ, Shabei St 83, Chongqing 400045, Peoples R China
来源
CHEMICAL PAPERS | 2018年 / 72卷 / 02期
基金
中国国家自然科学基金;
关键词
TiO2 nanotube arrays; Photoanode; Photocatalysis; Ofloxacin; Reactive species; Degradation pathways; Recyclability; WASTE-WATER TREATMENT; TIO2; PHOTOCATALYSIS; PHARMACEUTICAL COMPOUNDS; OXIDE NANOPARTICLES; MECHANISMS; KINETICS; ANATASE; OXIDATION; ALCOHOLS; ENERGY;
D O I
10.1007/s11696-017-0285-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The degradation of ofloxacin (OFX) at low concentration in aqueous solution by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells (UVA-LED/TiO2 NTs PFCs) was investigated. TiO2 nanotube arrays (TiO2 NTs) photoanode prepared by anodization-constituted anatase-rutile bicrystalline framework. The results indicated that the degradation efficiency of OFX by UVA-LED/TiO2 NTs PFC was significantly enhanced by 14.3% compared with UVA-LED/TiO2 NTs photocatalysis. The pH affected the degradation efficiency markedly; the highest degradation efficiency (95.0%) and the pseudo-first-order reaction rate constant k value (0.049 min(-1)) were achieved in neutral condition (pH 7.0). The degradation efficiency increased with the increasing concentration of dissolved oxygen (DO) in the UVA-LED/TiO2 NTs PFC. The main reactive species of OFX degradation are positive holes (h(+)) and superoxide ion radicals (O-2(center dot-)) in a DO sufficient condition. Furthermore, the possible pathways of OFX degradation were proposed.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 34 条
[1]   Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview [J].
Abdullah, M. ;
Kamarudin, S. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 :212-225
[2]   •OH reactions with aliphatic alcohols:: evaluation of kinetics by direct optical absorption measurement.: A pulse radiolysis study [J].
Alam, MS ;
Rao, BSM ;
Janata, E .
RADIATION PHYSICS AND CHEMISTRY, 2003, 67 (06) :723-728
[3]   Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds using TiO2 Heterogeneous Catalysis [J].
An, Taicheng ;
Yang, Hai ;
Song, Weihua ;
Li, Guiying ;
Luo, Haiying ;
Cooper, William J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (07) :2569-2575
[4]   Protonation equilibria of quinolone antibacterials in acetonitrile-water mobile phases used in LC [J].
Barbosa, J ;
Berges, R ;
Toro, I ;
SanzNebot, V .
TALANTA, 1997, 44 (07) :1271-1283
[5]   STUDY OF INTERACTION OF ALCOHOLS WITH TIO2 .1. DECOMPOSITION OF ETHANOL, 2-PROPANOL, AND TERT-BUTANOL ON ANATASE [J].
CARRIZOSA, I ;
MUNUERA, G .
JOURNAL OF CATALYSIS, 1977, 49 (02) :174-188
[6]   Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil [J].
Conkle, Jeremy L. ;
Lattao, Charisma ;
White, John R. ;
Cook, Robert L. .
CHEMOSPHERE, 2010, 80 (11) :1353-1359
[7]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[8]   Review of the anatase to rutile phase transformation [J].
Hanaor, Dorian A. H. ;
Sorrell, Charles C. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (04) :855-874
[9]   Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions [J].
Hapeshi, E. ;
Achilleos, A. ;
Vasquez, M. I. ;
Michael, C. ;
Xekoukoulotakis, N. P. ;
Mantzavinos, D. ;
Kassinos, D. .
WATER RESEARCH, 2010, 44 (06) :1737-1746
[10]   Designing Photoelectrodes for Photocatalytic Fuel Cells and Elucidating the Effects of Organic Substrates [J].
Hu, Chenyan ;
Kelm, Denis ;
Schreiner, Manuel ;
Wollborn, Tobias ;
Maedler, Lutz ;
Teoh, Wey Yang .
CHEMSUSCHEM, 2015, 8 (23) :4005-4015