Multimodal Continual Graph Learning with Neural Architecture Search

被引:18
|
作者
Cai, Jie [1 ]
Wang, Xin [1 ]
Guan, Chaoyu [1 ]
Tang, Yateng [2 ]
Xu, Jin [2 ]
Zhong, Bin [2 ]
Zhu, Wenwu [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Tencent Inc, Wechat, Data Qual Team, Shenzhen, Peoples R China
来源
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22) | 2022年
基金
中国国家自然科学基金;
关键词
continual learning; multimodal graph; neural architecture search; NETWORKS;
D O I
10.1145/3485447.3512176
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Continual graph learning is rapidly emerging as an important role in a variety of real-world applications such as online product recommendation systems and social media. While achieving great success, existing works on continual graph learning ignore the information from multiple modalities (e.g., visual and textual features) as well as the rich dynamic structural information hidden in the ever-changing graph data and evolving tasks. However, considering multimodal continual graph learning with evolving topological structures poses great challenges: i) it is unclear how to incorporate the multimodal information into continual graph learning and ii) it is nontrivial to design models that can capture the structure-evolving dynamics in continual graph learning. To tackle these challenges, in this paper we propose a novel Multimodal Structure-evolving Continual Graph Learning (MSCGL) model, which continually learns both the model architecture and the corresponding parameters for Adaptive Multimodal Graph Neural Network (AdaMGNN). To be concrete, our proposed MSCGL model simultaneously takes social information and multimodal information into account to build the multimodal graphs. In order for continually adapting to new tasks without forgetting the old ones, our MSCGL model explores a new strategy with joint optimization of Neural Architecture Search (NAS) and Group Sparse Regularization (GSR) across different tasks. These two parts interact with each other reciprocally, where NAS is expected to explore more promising architectures and GSR is in charge of preserving important information from the previous tasks. We conduct extensive experiments over two real-world multimodal continual graph scenarios to demonstrate the superiority of the proposed MSCGL model. Empirical experiments indicate that both the architectures and weight sharing across different tasks play important roles in affecting the model performances.
引用
收藏
页码:1292 / 1300
页数:9
相关论文
共 50 条
  • [41] Fitness Landscape Analysis of Graph Neural Network Architecture Search Spaces
    Nunes, Matheus
    Fraga, Paulo M.
    Pappa, Gisele L.
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 876 - 884
  • [42] GraphNAS plus plus : Distributed Architecture Search for Graph Neural Networks
    Gao, Yang
    Zhang, Peng
    Yang, Hong
    Zhou, Chuan
    Hu, Yue
    Tian, Zhihong
    Li, Zhao
    Zhou, Jingren
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 6973 - 6987
  • [43] Adaptive multi-scale Graph Neural Architecture Search framework
    Yang, Lintao
    Lio, Pietro
    Shen, Xu
    Zhang, Yuyang
    Peng, Chengbin
    NEUROCOMPUTING, 2024, 599
  • [44] Collaborative Neural Architecture Search for Personalized Federated Learning
    Liu, Yi
    Guo, Song
    Zhang, Jie
    Hong, Zicong
    Zhan, Yufeng
    Zhou, Qihua
    IEEE TRANSACTIONS ON COMPUTERS, 2025, 74 (01) : 250 - 262
  • [45] EGNAS: Efficient Graph Neural Architecture Search Through Evolutionary Algorithm
    Jwa, Younkyung
    Ahn, Chang Wook
    Kim, Man-Je
    MATHEMATICS, 2024, 12 (23)
  • [46] Genetic-GNN: Evolutionary architecture search for Graph Neural Networks
    Shi, Min
    Tang, Yufei
    Zhu, Xingquan
    Huang, Yu
    Wilson, David
    Zhuang, Yuan
    Liu, Jianxun
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [47] AutoGSR: Neural Architecture Search for Graph-based Session Recommendation
    Chen, Jingfan
    Zhu, Guanghui
    Hou, Haojun
    Yuan, Chunfeng
    Huang, Yihua
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1694 - 1704
  • [48] Automated Deep Learning: Neural Architecture Search Is Not the End
    Dong, Xuanyi
    Kedziora, David Jacob
    Musial, Katarzyna
    Gabrys, Bogdan
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2024, 17 (05): : 767 - 920
  • [49] An approach for combining multimodal fusion and neural architecture search applied to knowledge tracing
    Ding, Xinyi
    Han, Tao
    Fang, Yili
    Larson, Eric
    APPLIED INTELLIGENCE, 2023, 53 (09) : 11092 - 11103
  • [50] An approach for combining multimodal fusion and neural architecture search applied to knowledge tracing
    Xinyi Ding
    Tao Han
    Yili Fang
    Eric Larson
    Applied Intelligence, 2023, 53 : 11092 - 11103